749 research outputs found

    In Memoriam: Shepard Keene Linscott, Born March 6, 1837, Died December 11, 1906

    Get PDF
    Text from memorial addresses honoring Shepard Keene Linscott, born in Chesterville, Maine

    Analysis of linezolid and tigecycline as candidates for local prophylaxis via antibiotic-loaded bone cement

    Get PDF
    Objectives To assess the Gram-positive-specific antibiotic linezolid and the broad-spectrum antibiotic tigecycline for use in local antibiotic delivery via antibiotic-loaded bone cement. Methods Linezolid and tigecycline were added to Biomet bone cement at varying concentrations. Antibiotic elution over 1 week was quantified by HPLC-MS. The effect of wear on elution over 51 h was determined using a modified TE-66 wear tester. Eluted antibiotics were used to determine the MICs for a panel of clinically relevant bacteria. The impact strength of antibiotic-loaded samples was determined using a Charpy-type impact testing apparatus. Cytotoxicity of eluted antibiotics against MG-63 cells was evaluated using an MTT assay. Results Linezolid and tigecycline eluted from bone cement to clinically relevant levels within 1 h and retained activity over 1 week. Mechanical wear significantly reduced elution of tigecycline, but had little effect on elution of linezolid. Linezolid showed low cytotoxicity towards MG-63 cells with ≤300 mg/mL resulting in >50% cell activity. Cytotoxicity of tigecycline was higher, with an IC50 of 5–10 mg/L. Conclusions Linezolid and tigecycline retain activity after elution from bone cement. The concentration of tigecycline may need to be carefully controlled due to cytotoxicity. The effect of wear on bone cement may need to be considered if tigecycline is to be used for local delivery. Up to 10% linezolid can be added without affecting the impact strength of the bone cement. These results are promising indications for future investigation of these antibiotics for use in local antibiotic delivery strategies

    Database Search Strategies for Proteomic Data Sets Generated by Electron Capture Dissociation Mass Spectrometry

    Get PDF
    Large data sets of electron capture dissociation (ECD) mass spectra from proteomic experiments are rich in information; however, extracting that information in an optimal manner is not straightforward. Protein database search engines currently available are designed for low resolution CID data, from which Fourier transform ion cyclotron resonance (FT-ICR) ECD data differs significantly. ECD mass spectra contain both z-prime and z-dot fragment ions (and c-prime and c-dot); ECD mass spectra contain abundant peaks derived from neutral losses from charge-reduced precursor ions; FT-ICR ECD spectra are acquired with a larger precursor m/z isolation window than their low-resolution CID counterparts. Here, we consider three distinct stages of postacquisition analysis: (1) processing of ECD mass spectra prior to the database search; (2) the database search step itself and (3) postsearch processing of results. We demonstrate that each of these steps has an effect on the number of peptides identified, with the postsearch processing of results having the largest effect. We compare two commonly used search engines: Mascot and OMSSA. Using an ECD data set of modest size (3341 mass spectra) from a complex sample (mouse whole cell lysate), we demonstrate that search results can be improved from 630 identifications (19% identification success rate) to 1643 identifications (49% identification success rate). We focus in particular on improving identification rates for doubly charged precursors, which are typically low for ECD fragmentation. We compare our presearch processing algorithm with a similar algorithm recently developed for electron transfer dissociation (ETD) data

    Angiotensin II Enhances Adenylyl Cyclase Signaling via Ca2+/Calmodulin. Gq-Gs Cross-Talk Regulates Collagen Production in Cardiac Fibroblasts

    Get PDF
    Cardiac fibroblasts regulate formation of extracellular matrix in the heart, playing key roles in cardiac remodeling and hypertrophy. In this study, we sought to characterize cross-talk between Gq and Gs signaling pathways and its impact on modulating collagen synthesis by cardiac fibroblasts. Angiotensin II (ANG II) activates cell proliferation and collagen synthesis but also potentiates cyclic AMP (cAMP) production stimulated by β-adrenergic receptors (β-AR). The potentiation of β-AR-stimulated cAMP production by ANG II is reduced by phospholipase C inhibition and enhanced by overexpression of Gq. Ionomycin and thapsigargin increased intracellular Ca2+ levels and potentiated isoproterenol- and forskolin-stimulated cAMP production, whereas chelation of Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′, N′-tetraacetic acid/AM inhibited such potentiation. Inhibitors of tyrosine kinases, protein kinase C, or Gβγ did not alter this cross-talk. Immunoblot analyses showed prominent expression of adenylyl cyclase 3 (AC3), a Ca2+-activated isoform, along with AC2, AC4, AC5, AC6, and AC7. Of those isoforms, only AC3 and AC5/6 proteins were detected in caveolin-rich fractions. Overexpression of AC6 increased βAR-stimulated cAMP accumulation but did not alter the size of the ANG II potentiation, suggesting that the cross-talk is AC isoform-specific. Isoproterenol-mediated inhibition of serum-stimulated collagen synthesis increased from 31 to 48% in the presence of ANG II, indicating that βAR-regulated collagen synthesis increased in the presence of ANG II. These data indicate that ANG II potentiates cAMP formation via Ca2+-dependent activation of AC activity, which in turn attenuates collagen synthesis and demonstrates one functional consequence of cross-talk between Gq and Gs signaling pathways in cardiac fibroblasts

    Living on the Margin in the Anthropocene: Engagement Arenas for Sustainability Research and Action at the Ocean-Land Interface

    Get PDF
    The advent of the Anthropocene underscores the need to develop and implement transformative governance strategies that safeguard the Earth\u27s life-support systems, most critically at the ocean-land interface - the Margin. The seaward realm of the Margin is the new frontier for resource exploitation and colonization to meet the needs of coastal nations and humanity overall. Here, we spotlight the pivotal role of the Margin for planetary resilience and sustainability, highlight priority issues, and outline a research strategy which aims to: (a) better understand Margin social-ecological systems; (b) guide sustainable development of Margin resources; (c) design governance regimes to reverse unsustainable practices; (d) facilitate equitable sharing of Margin resources; and (e) evaluate alternative research approaches and partnerships that address major Margin challenges. © 2015 The Authors

    Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics

    Get PDF
    The addition of the monosaccharide beta-N-acetyl-D-glucosamine to proteins (O-GlcNAc glycosylation) is an intracellular, post-translational modification that shares features with phosphorylation. Understanding the cellular mechanisms and signaling pathways that regulate O-GlcNAc glycosylation has been challenging because of the difficulty of detecting and quantifying the modification. Here, we describe a new strategy for monitoring the dynamics of O-GlcNAc glycosylation using quantitative mass spectrometry-based proteomics. Our method, which we have termed quantitative isotopic and chemoenzymatic tagging (QUIC-Tag), combines selective, chemoenzymatic tagging of O-GlcNAc proteins with an efficient isotopic labeling strategy. Using the method, we detect changes in O-GlcNAc glycosylation on several proteins involved in the regulation of transcription and mRNA translocation. We also provide the first evidence that O-GlcNAc glycosylation is dynamically modulated by excitatory stimulation of the brain in vivo. Finally, we use electron-transfer dissociation mass spectrometry to identify exact sites of O-GlcNAc modification. Together, our studies suggest that O-GlcNAc glycosylation occurs reversibly in neurons and, akin to phosphorylation, may have important roles in mediating the communication between neurons

    SILAC-based proteomic quantification of chemoattractant-induced cytoskeleton dynamics on a second to minute timescale

    Get PDF
    Cytoskeletal dynamics during cell behaviours ranging from endocytosis and exocytosis to cell division and movement is controlled by a complex network of signalling pathways, the full details of which are as yet unresolved. Here we show that SILAC-based proteomic methods can be used to characterize the rapid chemoattractant-induced dynamic changes in the actin–myosin cytoskeleton and regulatory elements on a proteome-wide scale with a second to minute timescale resolution. This approach provides novel insights in the ensemble kinetics of key cytoskeletal constituents and association of known and novel identified binding proteins. We validate the proteomic data by detailed microscopy-based analysis of in vivo translocation dynamics for key signalling factors. This rapid large-scale proteomic approach may be applied to other situations where highly dynamic changes in complex cellular compartments are expected to play a key role
    corecore