569 research outputs found

    EPB41L5 is Associated with the Metastatic Potential of Low-grade Pancreatic Neuroendocrine Tumors

    Get PDF
    Background/Aim: Low-grade pancreatic neuroendocrine tumors (LG-PNETs) behave unpredictably. The aim of the study was to identify biomarkers that predict PNET metastasis to improve treatment selection. Patients and Methods: Five patients with primary non-metastatic LG-PNETs, six with primary LG-PNETs with synchronous or metachronous metastases (M-PNETs), and six metastatic to liver LG-PNETs (ML-PNETs) from the group of six M-PNET patients were selected. RNA data were normalized using iterative rank-order normalization. Student’s t-test identified differentially-expressed genes in LG-PNETs versus M-PNETs. A 2-fold difference in expression was considered to be significant. Results were validated with an independent dataset of LG-PNETs and metastatic LG-PNETs. Results: Overall, 195 genes had a >2-fold change (in either direction). A total of 29 genes were differentially overexpressed in M-PNETs. Erythrocyte membrane protein band 4.1-like 5 (EPB41L5) had a 2.07-fold change increase in M-PNETs and the smallest p-value. EPB41L5 was not statistically different between M-PNETs and ML-PNETs. EPB41L5 differential expression between primary and metastatic LG-PNETs was confirmed by immunohistochemistry. Conclusion: These results support further investigation into whether EPB41L5 is a biomarker of PNETs with high risk for metastases

    Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors

    Get PDF
    Background Patients with advanced midgut neuroendocrine tumors who have had disease progression during first-line somatostatin analogue therapy have limited therapeutic options. This randomized, controlled trial evaluated the efficacy and safety of lutetium-177 (177Lu)-Dotatate in patients with advanced, progressive, somatostatin-receptor-positive midgut neuroendocrine tumors. Methods We randomly assigned 229 patients who had well-differentiated, metastatic midgut neuroendocrine tumors to receive either 177Lu-Dotatate (116 patients) at a dose of 7.4 GBq every 8 weeks (four intravenous infusions, plus best supportive care including octreotide long-acting repeatable [LAR] administered intramuscularly at a dose of 30 mg) (177Lu-Dotatate group) or octreotide LAR alone (113 patients) administered intramuscularly at a dose of 60 mg every 4 weeks (control group). The primary end point was progression-free survival. Secondary end points included the objective response rate, overall survival, safety, and the side-effect profile. The final analysis of overall survival will be conducted in the future as specified in the protocol; a prespecified interim analysis of overall survival was conducted and is reported here. Results At the data-cutoff date for the primary analysis, the estimated rate of progression-free survival at month 20 was 65.2% (95% confidence interval [CI], 50.0 to 76.8) in the 177Lu-Dotatate group and 10.8% (95% CI, 3.5 to 23.0) in the control group. The response rate was 18% in the 177Lu-Dotatate group versus 3% in the control group (P<0.001). In the planned interim analysis of overall survival, 14 deaths occurred in the 177Lu-Dotatate group and 26 in the control group (P=0.004). Grade 3 or 4 neutropenia, thrombocytopenia, and lymphopenia occurred in 1%, 2%, and 9%, respectively, of patients in the 177Lu-Dotatate group as compared with no patients in the control group, with no evidence of renal toxic effects during the observed time frame. Conclusions Treatment with 177Lu-Dotatate resulted in markedly longer progression-free survival and a significantly higher response rate than high-dose octreotide LAR among patients with advanced midgut neuroendocrine tumors. Preliminary evidence of an overall survival benefit was seen in an interim analysis; confirmation will be required in the planned final analysis. Clinically significant myelosuppression occurred in less than 10% of patients in the 177Lu-Dotatate group. (Funded by Advanced Accelerator Applications; NETTER-1 ClinicalTrials.gov number, NCT01578239 ; EudraCT number 2011-005049-11

    DAXX mutations as potential genomic markers of malignant evolution in small nonfunctioning pancreatic neuroendocrine tumors

    Get PDF
    Management of localized well-differentiated pancreatic neuroendocrine tumors (panNETs) is controversial and primarily dependent on tumor size. Upfront surgery is usually recommended for tumors larger than 2 cm in diameter since they frequently show metastatic potential, whereas smaller panNETs are generally characterized by an indolent clinical course, with a rate of relapse or metastasis below 15%. To explore whether increased tumor size is paralleled by genomic variations, we compared the rate and the mutational patterns of putative driver genes that are recurrently altered in these tumors by investigating differential cohorts of panNET surgical specimens smaller (n = 27) or larger than 2 cm (n = 29). We found that the cumulative number of mutations detected in panNETs &gt;2 cm was significantly higher (p = 0.03) relative to smaller tumors, while mutations of DAXX were significantly more frequent in the cohort of larger tumors (p = 0.05). Moreover, mutations of DAXX were associated with features of malignancy including increased grade, nodal involvement and lymphovascular invasion, and independently predicted both relapse after surgery (p = 0.05) and reduced DFS in multivariable analysis (p = 0.02). Our data suggest that alterations of the DAXX/ATRX molecular machinery increase the malignant potential of panNETs, and that identification of mutations of DAXX/ATRX in small, nonfunctioning tumors can predict the malignant progression observed in a minority of them

    An expression signature of the angiogenic response in gastrointestinal neuroendocrine tumours: correlation with tumour phenotype and survival outcomes.

    Get PDF
    BACKGROUND: Gastroenteropancreatic neuroendocrine tumours (GEP-NETs) are heterogeneous with respect to biological behaviour and prognosis. As angiogenesis is a renowned pathogenic hallmark as well as a therapeutic target, we aimed to investigate the prognostic and clinico-pathological role of tissue markers of hypoxia and angiogenesis in GEP-NETs. METHODS: Tissue microarray (TMA) blocks were constructed with 86 tumours diagnosed from 1988 to 2010. Tissue microarray sections were immunostained for hypoxia inducible factor 1α (Hif-1α), vascular endothelial growth factor-A (VEGF-A), carbonic anhydrase IX (Ca-IX) and somatostatin receptors (SSTR) 1–5, Ki-67 and CD31. Biomarker expression was correlated with clinico-pathological variables and tested for survival prediction using Kaplan–Meier and Cox regression methods. RESULTS: Eighty-six consecutive cases were included: 51% male, median age 51 (range 16–82), 68% presenting with a pancreatic primary, 95% well differentiated, 51% metastatic. Higher grading (P=0.03), advanced stage (P<0.001), high Hif-1α and low SSTR-2 expression (P=0.03) predicted for shorter overall survival (OS) on univariate analyses. Stage, SSTR-2 and Hif-1α expression were confirmed as multivariate predictors of OS. Median OS for patients with SSTR-2+/Hif-1α-tumours was not reached after median follow up of 8.8 years, whereas SSTR-2-/Hif-1α+ GEP-NETs had a median survival of only 4.2 years (P=0.006). CONCLUSION: We have identified a coherent expression signature by immunohistochemistry that can be used for patient stratification and to optimise treatment decisions in GEP-NETs independently from stage and grading. Tumours with preserved SSTR-2 and low Hif-1α expression have an indolent phenotype and may be offered less aggressive management and less stringent follow up

    Direct Binding of a Hepatitis C Virus Inhibitor to the Viral Capsid Protein

    Get PDF
    Over 130 million people are infected chronically with hepatitis C virus (HCV), which, together with HBV, is the leading cause of liver disease. Novel small molecule inhibitors of Hepatitis C virus (HCV) are needed to complement or replace current treatments based on pegylated interferon and ribavirin, which are only partially successful and plagued with side-effects. Assembly of the virion is initiated by the oligomerization of core, the capsid protein, followed by the interaction with NS5A and other HCV proteins. By screening for inhibitors of core dimerization, we previously discovered peptides and drug-like compounds that disrupt interactions between core and other HCV proteins, NS3 and NS5A, and block HCV production. Here we report that a biotinylated derivative of SL209, a prototype small molecule inhibitor of core dimerization (IC50 of 2.80 µM) that inhibits HCV production with an EC50 of 3.20 µM, is capable of penetrating HCV-infected cells and tracking with core. Interaction between the inhibitors, core and other viral proteins was demonstrated by SL209–mediated affinity-isolation of HCV proteins from lysates of infected cells, or of the corresponding recombinant HCV proteins. SL209-like inhibitors of HCV core may form the basis of novel treatments of Hepatitis C in combination with other target-specific HCV drugs such as inhibitors of the NS3 protease, the NS5B polymerase, or the NS5A regulatory protein. More generally, our work supports the hypothesis that inhibitors of viral capsid formation might constitute a new class of potent antiviral agents, as was recently also shown for HIV capsid inhibitors

    Hepatobiliary neuroendocrine carcinoma: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Neuroendocrine carcinoma of the gallbladder is a rather uncommon disease. We report a case of a neuroendocrine tumor that was located in the wall of the gallbladder and that extended into the liver.</p> <p>Case presentation</p> <p>A 52-year-old Caucasian woman presented with right-sided abdominal pain, ascites and jaundice. An MRI scan revealed a tumor mass located in the gallbladder wall and involving the liver. A partial hepatectomy and cholecystectomy were performed. Histology revealed a neuroendocrine tumor, which showed scattered Grimelius positive cells and immuno-expressed epithelial and endocrine markers. Our patient is undergoing chemotherapy treatment.</p> <p>Conclusion</p> <p>Gastroenteropancreatic neuroendocrine tumors need a multidisciplinary approach, involving immunohistochemistry and molecular-genetic techniques.</p

    A phase I study of the oral gamma secretase inhibitor R04929097 in combination with gemcitabine in patients with advanced solid tumors (PHL-078/CTEP 8575)

    Get PDF
    PURPOSE: To establish the recommended phase II dose of the oral γ-secretase inhibitor RO4929097 (RO) in combination with gemcitabine; secondary objectives include the evaluation of safety, tolerability, pharmacokinetics, biomarkers of Notch signaling and preliminary anti-tumor activity. METHODS: Patients with advanced solid tumors were enrolled in cohorts of escalating RO dose levels (DLs). Tested RO DLs were 20 mg, 30 mg, 45 mg and 90 mg. RO was administered orally, once daily on days 1-3, 8-10, 15-17, 22-24. Gemcitabine was administered at 1,000 mg/m(2) on d1, 8, and 15 in 28 d cycles. Dose limiting toxicities (DLTs) were assessed by CTCAE v4. Serial plasma was collected for RO (total and unbound) and gemcitabine pharmacokinetic analysis. Biomarkers of Notch signaling were assessed by immunohistochemistry in archival tissue. Antitumor activity was evaluated (RECIST 1.1). RESULTS: A total of 18 patients were enrolled to establish the recommended phase II dose. Of these, 3 patients received 20 mg RO, 7 patients received 30 mg RO, 6 patients received 45 mg RO and 2 patients received 90 mg RO. DLTs were grade 3 transaminitis (30 mg RO), grade 3 transaminitis and maculopapular rash (45 mg RO), and grade 3 transaminitis and failure to receive 75 % of planned RO doses secondary to prolonged neutropenia (90 mg); all were reversible. The maximum tolerated dose was exceeded at 90 mg RO. Pharmacokinetic analysis of both total and free RO confirmed the presence of autoinduction at 45 and 90 mg. Median levels of Notch3 staining were higher in individuals who received fewer than 4 cycles (p = 0.029). Circulating angiogenic factor levels did not correlate with time to progression or ≥ grade 3 adverse events. Best response (RECIST 1.1) was partial response (nasopharyngeal cancer) and stable disease > 4 months was observed in 3 patients (pancreas, tracheal, and breast primary cancers). CONCLUSIONS: RO and gemcitabine can be safely combined. The recommended phase II dose of RO was 30 mg in combination with gemcitabine 1,000 mg/m(2). Although RO exposure was limited by the presence of autoinduction, RO levels achieved exceeded the area under the concentration-time curve for 0-24 h (AUC(0-24)) predicted for efficacy in preclinical models using daily dosing. Evidence of clinical antitumor activity and prolonged stable disease were identified

    TheraSphere Yttrium-90 Glass Microspheres Combined With Chemotherapy Versus Chemotherapy Alone in Second-Line Treatment of Patients With Metastatic Colorectal Carcinoma of the Liver: Protocol for the EPOCH Phase 3 Randomized Clinical Trial

    Get PDF
    BACKGROUND: Colorectal cancer is one of the most common cancers and causes of cancer-related death. Up to approximately 70% of patients with metastatic colorectal cancer (mCRC) have metastases to the liver at initial diagnosis. Second-line systemic treatment in mCRC can prolong survival after development of disease progression during or after first-line treatment and in those who are intolerant to first-line treatment. OBJECTIVE: The objective of this study is to evaluate the efficacy and safety of transarterial radioembolization (TARE) with TheraSphere yttrium-90 (⁹⁰Y)glass microspheres combined with second-line therapy in patients with mCRC of the liver who had disease progression during or after first-line chemotherapy. METHODS: EPOCH is an open-label, prospective, multicenter, randomized, phase 3 trial being conducted at up to 100 sites in the United States, Canada, Europe, and Asia. Eligible patients have mCRC of the liver and disease progression after first-line chemotherapy with either an oxaliplatin-based or irinotecan-based regimen and are eligible for second-line chemotherapy with the alternate regimen. Patients were randomized 1:1 to the TARE group (chemotherapy with TARE in place of the second chemotherapy infusion and subsequent resumption of chemotherapy) or the control group (chemotherapy alone). The addition of targeted agents is permitted. The primary end points are progression-free survival and hepatic progression-free survival. The study objective will be considered achieved if at least one primary end point is statistically significant. Secondary end points are overall survival, time to symptomatic progression defined as Eastern Cooperative Oncology Group Performance Status score of 2 or higher, objective response rate, disease control rate, quality-of-life assessment by the Functional Assessment of Cancer Therapy-Colorectal Cancer questionnaire, and adverse events. The study is an adaptive trial, comprising a group sequential design with 2 interim analyses with a planned maximum of 420 patients. The study is designed to detect a 2.5-month increase in median progression-free survival, from 6 months in the control group to 8.5 months in the TARE group (hazard ratio [HR] 0.71), and a 3.5-month increase in median hepatic progression-free survival time, from 6.5 months in the control group to 10 months in the TARE group (HR 0.65). On the basis of simulations, the power to detect the target difference in either progression-free survival or hepatic progression-free survival is >90%, and the power to detect the target difference in each end point alone is >80%. RESULTS: Patient enrollment ended in October 2018. The first interim analysis in June 2018 resulted in continuation of the study without any changes. CONCLUSIONS: The EPOCH study may contribute toward the establishment of the role of combination therapy with TARE and oxaliplatin- or irinotecan-based chemotherapy in the second-line treatment of mCRC of the liver. TRIAL REGISTRATION: ClinicalTrials.gov NCT01483027; https://clinicaltrials.gov/ct2/show/NCT01483027 (Archived by WebCite at http://www.webcitation.org/734A6PAYW)
    corecore