323 research outputs found

    QSO hosts and environments at z=0.9 to 4.2: JHK images with adaptive optics

    Get PDF
    We have observed nine QSOs with redshifts 0.85 to 4.16 at near-IR wavelengths with the adaptive optics bonnette of the Canada-France-Hawaii telescope. Exposure times ranged from 1500 to 24000s (mostly near 7000s) in J, H, or K bands, with pixels 0.035 arcsec on the sky. The FWHM of the co-added images at the location of the quasars are typically 0.16 arcsec. Including another QSO published previously, we find associated QSO structure in at least eight of ten objects, including the QSO at z = 4.16. The structures seen in all cases include long faint features which appear to be tidal tails. In four cases we have also resolved the QSO host galaxy, but find them to be smooth and symmetrical: future PSF removal may expand this result. Including one object previously reported, of the nine objects with more extended structure, five are radio-loud, and all but one of these appear to be in a dense small group of compact galaxy companions. The radio-quiet objects do not occupy the same dense environments, as seen in the NIR. In this small sample we do not find any apparent trends of these properties with redshift, over the range 0.8 < z < 2.4. The colors of the host galaxies and companions are consistent with young stellar populations at the QSO redshift. Our observations suggest that adaptive optic observations in the visible region will exhibit luminous signatures of the substantial star-formation activity that must be occurring.Comment: 22 pages including 10 tables, plus 11 figures. To appear in A

    Characterization of dissolved organic matter in Lake Superior and its watershed using ultrahigh resolution mass spectrometry

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Organic Geochemistry 43 (2012): 1-11, doi:10.1016/j.orggeochem.2011.11.007.With the advent of ultrahigh resolution mass spectrometry, recent studies have begun to resolve molecular-level relationships between terrestrial and aquatic dissolved organic matter (DOM) in rivers, estuaries, mangrove swamps and their receiving oceans and lakes. Here, we extend ultrahigh resolution mass spectrometry techniques to Lake Superior, the largest freshwater lake in the world by area. Solid-phase extracted samples from the western arm of the lake and its watershed, including swamp, creek, river, lake-river confluence and offshore lake sites were compared using electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Results were analyzed using cluster analysis and van Krevelen diagrams. Chemical similarity appears related to hydrological proximity, terrestrial impact and flow conditions. For example, higher and lower flow samples from the same stream differ from one another. Toivola Swamp, Lake Superior, and the south shore river have diverse arrays of unique molecular formulae.relative to the north shore river and stream sampled in this data set. Lake Superior’s unique elemental formulae, relative to its watershed samples, are primarily in the lignin-like and reduced hydrocarbon regions of van Krevelen diagrams. ESI-amenable Lake Superior DOM also has a higher proportion of formulae containing nitrogen or sulfur relative to the other samples. The degree of overlap among formulae within our data set is consistent with previous ESI FT-ICR-MS characterization of terrestrial, estuarine and marine OM. There appears to be a conserved portion of formulae across natural OM samples, perhaps because these compounds are intrinsically refractory or because they are commonly generated as products of natural reworking processes.This study was supported in part by NSF grant OCE-0825600 (to E.C.M.). C.S. was supported in part by a National Science Foundation Graduates in K- 12 Education grant to the University of Minnesota Duluth. Travel support was provided to C.S. through the travel fund at the WHOI FT-MS facility which was funded by the WHOI Director of Research and NSF grant OCE- 0751897

    Characterizing the Adaptive Optics Off-Axis Point-Spread Function - I: A Semi-Empirical Method for Use in Natural-Guide-Star Observations

    Full text link
    Even though the technology of adaptive optics (AO) is rapidly maturing, calibration of the resulting images remains a major challenge. The AO point-spread function (PSF) changes quickly both in time and position on the sky. In a typical observation the star used for guiding will be separated from the scientific target by 10" to 30". This is sufficient separation to render images of the guide star by themselves nearly useless in characterizing the PSF at the off-axis target position. A semi-empirical technique is described that improves the determination of the AO off-axis PSF. The method uses calibration images of dense star fields to determine the change in PSF with field position. It then uses this information to correct contemporaneous images of the guide star to produce a PSF that is more accurate for both the target position and the time of a scientific observation. We report on tests of the method using natural-guide-star AO systems on the Canada-France-Hawaii Telescope and Lick Observatory Shane Telescope, augmented by simple atmospheric computer simulations. At 25" off-axis, predicting the PSF full width at half maximum using only information about the guide star results in an error of 60%. Using an image of a dense star field lowers this error to 33%, and our method, which also folds in information about the on-axis PSF, further decreases the error to 19%.Comment: 29 pages, 9 figures, accepted for publication in the PAS

    CATS: CfAO Treasury Survey of distant galaxies, supernovae, and AGN's

    Get PDF
    The NSF Science and Technology Center for Adaptive Optics (CfAO) is supporting a major scientific legacy project called the CfAO Treasury Survey (CATS). CATS is obtaining near-infrared AO data in deep HST survey fields, such as GEMS, GOODS-N, & EGS. Besides summarizing the main objectives of CATS, we highlight some recent imaging work on the study of distant field galaxies, AGNs, and a redshift z = 1.32 supernova. CATS plans the first data release to the community in early 2007 (check http://www.astro.ucla.edu/~irlab/cats/index.shtml for more details on CATS and latest updates).Comment: 2 pages. Proceedings of the IAU Symposium 235, "Galaxy Evolution across the Hubble Time", F. Combes & J. Palous (eds.

    Radio Galaxies at z = 1.1 to 3.8: Adaptive-Optics Imaging and Archival Hubble Space Telescope Data

    Get PDF
    We have undertaken a program of high-resolution imaging of high-redshift radio galaxies (HzRGs) using adaptive optics on the Canada-France-Hawaii Telescope. We report on deep imaging in J, H,and K bands of 6 HzRGs in the redshift range 1.1 to 3.8. At these redshifts, near-infrared bandpasses sample the rest-frame visible galaxian light. The radio galaxy is resolved in all the fields and is generally elongated along the axis of the radio lobes. These images are compared to archival Hubble Space Telescope Wide-Field Planetary Camera 2 optical observations of the same fields and show the HzRG morphology in rest-frame ultraviolet and visible light is generally very similar: a string of bright compact knots. Furthermore, this sample - although very small - suggests the colors of the knots are consistent with light from young stellar populations. If true, a plausible explanation is that these objects are being assembled by mergers at high redshift.Comment: 32 pages, 8 figures, accepted for publication in the Astrophysical Journa

    Accounting for anisoplanatic point spread function in deep wide-field adaptive optics images

    Full text link
    In this paper we present the approach we have used to determine and account for the anisoplanatic point spread function (PSF) in deep adaptive optics (AO) images for the Survey of a Wide Area with NACO (SWAN) at the ESO VLT. The survey comprises adaptive optics observations in the Ks band totaling ~ 30 arcmin^2, assembled from 42 discrete fields centered on different bright stars suitable for AO guiding. We develop a parametric model of the PSF variations across the field of view in order to build an accurate model PSF for every galaxy detected in each of the fields. We show that this approach is particularly convenient, as it uses only easily available data and makes no uncertain assumptions about the stability of the isoplanatic angle during any given night. The model was tested using simulated galaxy profiles to check its performance in terms of recovering the correct morphological parameters; we find that the results are reliable up to Ks ~ 20.5 (K_AB ~ 22.3) in a typical SWAN field. Finally, the model obtained was used to derive the first results from five SWAN fields, and to obtain the AO morphology of 55 galaxies brighter than Ks = 20. These preliminary results demonstrate the unique power of AO observations to derive the details of faint galaxy morphologies and to study galaxy evolution.Comment: 12 pages, 12 figures. Accepted for publication in A&

    Triggered or Self-Regulated Star Formation within Intermediate Redshift Luminous Infrared Galaxies (I). Morphologies and Spatially Resolved Spectral Energy Distributions

    Full text link
    We imaged a set of 15 intermediate redshift (z~0.8) luminous infrared galaxies (LIRGs) with the Keck Laser Guide Star (LGS) AO facility. These galaxies were selected from the GOODS-S field, allowing us to combine the high spatial resolution HST optical (B, V, i, and z-bands) images with our near-infrared (K'-band) images to study the LIRG morphologies and spatially resolved spectral energy distributions (SEDs). Two thirds of the LIRGs are disk galaxies, with only one third showing some evidence for interactions, minor, or major mergers. In contrast with local LIRG disks (which are primarily barred systems), only 10% of the LIRG disks in our sample contain a prominent bar. While the optical bands tend to show significant point-like substructure, indicating distributed star formation, the AO K-band images tend to be smooth. The SEDs of the LIRGs are consistent with distributed dusty star formation, as exhibited by optical to IR colors redder than allowed by old stellar populations alone. This effect is most pronounced in the galaxy cores, possibly indicating central star formation. We also observed a set of 11 intermediate redshift comparison galaxies, selected to be non-ellipticals with apparent K-band magnitudes comparable to the LIRGs. The "normal" (non-LIRG) systems tended to have lower optical luminosity, lower stellar mass, and more irregular morphology than the LIRGs. Half of the "normal" galaxies have SEDs consistent with intermediate aged stellar populations and minimal dust. The other half show evidence for some dusty star formation, usually concentrated in their cores. Our work suggests that the LIRG disk galaxies are similar to large disk systems today, undergoing self regulated star formation, only at 10 - 20 times higher rates. (Abridged)Comment: Accepted for Publication in AJ. 27 pages, 21 figures, 3 table

    Characterizing the Adaptive Optics Off-Axis Point-Spread Function. II. Methods for Use in Laser Guide Star Observations

    Full text link
    Most current astronomical adaptive optics (AO) systems rely on the availability of a bright star to measure the distortion of the incoming wavefront. Replacing the guide star with an artificial laser beacon alleviates this dependency on bright stars and therefore increases sky coverage, but it does not eliminate another serious problem for AO observations. This is the issue of PSF variation with time and field position near the guide star. In fact, because a natural guide star is still necessary for correction of the low-order phase error, characterization of laser guide star (LGS) AO PSF spatial variation is more complicated than for a natural guide star alone. We discuss six methods for characterizing LGS AO PSF variation that can potentially improve the determination of the PSF away from the laser spot, that is, off-axis. Calibration images of dense star fields are used to determine the change in PSF variation with field position. This is augmented by AO system telemetry and simple computer simulations to determine a more accurate off-axis PSF. We report on tests of the methods using the laser AO system on the Lick Observatory Shane Telescope. [Abstract truncated.]Comment: 31 pages, 5 figures, accepted by PAS

    FACT - Long-term stability and observations during strong Moon light

    Full text link
    The First G-APD Cherenkov Telescope (FACT) is the first Cherenkov telescope equipped with a camera made of silicon photon detectors (G-APD aka. SiPM). Since October 2011, it is regularly taking data on the Canary Island of La Palma. G-APDs are ideal detectors for Cherenkov telescopes as they are robust and stable. Furthermore, the insensitivity of G-APDs towards strong ambient light allows to conduct observations during bright Moon and twilight. This gain in observation time is essential for the long-term monitoring of bright TeV blazars. During the commissioning phase, hundreds of hours of data (including data from the the Crab Nebula) were taken in order to understand the performance and sensitivity of the instrument. The data cover a wide range of observation conditions including different weather conditions, different zenith angles and different light conditions (ranging from dark night to direct full Moon). We use a new parmetrisation of the Moon light background to enhance our scheduling and to monitor the atmosphere. With the data from 1.5 years, the long-term stability and the performance of the camera during Moon light is studied and compared to that achieved with photomultiplier tubes so far.Comment: 3 pages, 3 figures, FACT Contribution to the 33rd International Cosmic Ray Conference (ICRC), Rio de Janeir
    • …
    corecore