15,490 research outputs found
Research of Magnetospheric Physics Phenomena Using Sounding Rockets
A bibliography of approximately 25 papers is presented on the Electron Echo Experiments. The data analysis included an extensive study of the electron accelerator beam, detector data correlations with the electron beam injections, and the study of about 30 onboard detected echoes
Archimedean local height differences on elliptic curves
To compute generators for the Mordell-Weil group of an elliptic curve over a
number field, one needs to bound the difference between the naive and the
canonical height from above. We give an elementary and fast method to compute
an upper bound for the local contribution to this difference at an archimedean
place, which sometimes gives better results than previous algorithms.Comment: 10 pages, comments welcom
Two equation modelling and the pseudo compressibility technique
The primary objective of the Center for Modelling of Turbulence and Transition (CMOTT) is to further the understanding of turbulence theory for engineering applications. One important foundation is the establishment of a data base encompassing the multitude of existing models as well as newly proposed ideas. The research effort described is a precursor to an extended survey of two equation turbulence models in the presence of a separated shear layer. Recently, several authors have examined the performance of two equation models in the context of the backward facing step flow. Conflicting results, however, demand that further attention is necessary to properly understand the behavior and limitations of this popular technique, especially the low Reynolds number formulations. The objective is to validate an incompressible Navier Stokes code for use as a numerical test-bed. In turn, this code will be used for analyzing the performance of several two equation models
A critical comparison of several low Reynolds number k-epsilon turbulence models for flow over a backward facing step
Turbulent backward-facing step flow was examined using four low turbulent Reynolds number k-epsilon models and one standard high Reynolds number technique. A tunnel configuration of 1:9 (step height: exit tunnel height) was used. The models tested include: the original Jones and Launder; Chien; Launder and Sharma; and the recent Shih and Lumley formulation. The experimental reference of Driver and Seegmiller was used to make detailed comparisons between reattachment length, velocity, pressure, turbulent kinetic energy, Reynolds shear stress, and skin friction predictions. The results indicated that the use of a wall function for the standard k-epsilon technique did not reduce the calculation accuracy for this separated flow when compared to the low turbulent Reynolds number techniques
Geometry of canonical self-similar tilings
We give several different geometric characterizations of the situation in
which the parallel set of a self-similar set can be described
by the inner -parallel set of the associated
canonical tiling , in the sense of \cite{SST}. For example,
if and only if the boundary of the
convex hull of is a subset of , or if the boundary of , the
unbounded portion of the complement of , is the boundary of a convex set. In
the characterized situation, the tiling allows one to obtain a tube formula for
, i.e., an expression for the volume of as a function of
. On the way, we clarify some geometric properties of canonical
tilings.
Motivated by the search for tube formulas, we give a generalization of the
tiling construction which applies to all self-affine sets having empty
interior and satisfying the open set condition. We also characterize the
relation between the parallel sets of and these tilings.Comment: 20 pages, 6 figure
- …