8 research outputs found

    Artifacts In Magnetic Resonance Imaging and Computed Tomography Caused By Dental Materials

    Get PDF
    BACKGROUND: Artifacts caused by dental restorations, such as dental crowns, dental fillings and orthodontic appliances, are a common problem in MRI and CT scans of the head and neck. The aim of this in-vitro study was to identify and evaluate the artifacts produced by different dental restoration materials in CT and MRI images. METHODS: Test samples of 44 materials (Metal and Non-Metal) commonly used in dental restorations were fabricated and embedded with reference specimens in gelatin moulds. MRI imaging of 1.5T and CT scan were performed on the samples and evaluated in two dimensions. Artifact size and distortions were measured using a digital image analysis software. RESULTS: In MRI, 13 out of 44 materials produced artifacts, while in CT 41 out of 44 materials showed artifacts. Artifacts produced in both MRI and CT images were categorized according to the size of the artifact. SIGNIFICANCE: Metal based restoration materials had strong influence on CT and less artifacts in MRI images. Rare earth elements such as Ytterbium trifluoride found in composites caused artifacts in both MRI and CT. Recognizing these findings would help dental materials manufacturers and developers to produce materials which can cause less artifacts in MRI and CT images

    In vivo macromolecule signals in rat brain 1 H-MR spectra at 9.4T: Parametrization, spline baseline estimation, and T 2 relaxation times

    No full text
    Purpose: Reliable detection and fitting of macromolecules (MM) are crucial for accurate quantification of brain short-echo time (TE) 1 H-MR spectra. An experimentally acquired single MM spectrum is commonly used. Higher spectral resolution at ultra-high field (UHF) led to increased interest in using a parametrized MM spectrum together with flexible spline baselines to address unpredicted spectroscopic components. Herein, we aimed to: (1) implement an advanced methodological approach for post-processing, fitting, and parametrization of 9.4T rat brain MM spectra; (2) assess the concomitant impact of the LCModel baseline and MM model (ie, single vs parametrized); and (3) estimate the apparent T2 relaxation times for seven MM components. Methods: A single inversion recovery sequence combined with advanced AMARES prior knowledge was used to eliminate the metabolite residuals, fit, and parametrize 10 MM components directly from 9.4T rat brain in vivo 1 H-MR spectra at different TEs. Monte Carlo simulations were also used to assess the concomitant influence of parametrized MM and DKNTMN parameter in LCModel. Results: A very stiff baseline (DKNTMN ≄ 1 ppm) in combination with a single MM spectrum led to deviations in metabolite concentrations. For some metabolites the parametrized MM showed deviations from the ground truth for all DKNTMN values. Adding prior knowledge on parametrized MM improved MM and metabolite quantification. The apparent T2 ranged between 12 and 24 ms for seven MM peaks. Conclusion: Moderate flexibility in the spline baseline was required for reliable quantification of real/experimental spectra based on in vivo and Monte Carlo data. Prior knowledge on parametrized MM improved MM and metabolite quantification

    From raw data to data-analysis for magnetic resonance spectroscopy - the missing link : jMRUI2XML

    No full text
    Background: Magnetic resonance spectroscopy provides metabolic information about living tissues in a non-invasive way. However, there are only few multi-centre clinical studies, mostly performed on a single scanner model or data format, as there is no flexible way of documenting and exchanging processed magnetic resonance spectroscopy data in digital format. This is because the DICOM standard for spectroscopy deals with unprocessed data. This paper proposes a plugin tool developed for jMRUI, namely jMRUI2XML, to tackle the latter limitation. jMRUI is a software tool for magnetic resonance spectroscopy data processing that is widely used in the magnetic resonance spectroscopy community and has evolved into a plugin platform allowing for implementation of novel features. Results: jMRUI2XML is a Java solution that facilitates common preprocessing of magnetic resonance spectroscopy data across multiple scanners. Its main characteristics are: 1) it automates magnetic resonance spectroscopy preprocessing, and 2) it can be a platform for outputting exchangeable magnetic resonance spectroscopy data. The plugin works with any kind of data that can be opened by jMRUI and outputs in extensible markup language format. Data processing templates can be generated and saved for later use. The output format opens the way for easy data sharing- due to the documentation of the preprocessing parameters and the intrinsic anonymization - for example for performing pattern recognition analysis on multicentre/multimanufacturer magnetic resonance spectroscopy data. Conclusions: jMRUI2XML provides a self-contained and self-descriptive format accounting for the most relevant information needed for exchanging magnetic resonance spectroscopy data in digital form, as well as for automating its processing. This allows for tracking the procedures the data has undergone, which makes the proposed tool especially useful when performing pattern recognition analysis. Moreover, this work constitutes a first proposal for a minimum amount of information that should accompany any magnetic resonance processed spectrum, towards the goal of achieving better transferability of magnetic resonance spectroscopy studies

    ă‚»ăƒłă‚żăƒŒăźćą—æ”čçŻ‰ă«ă‚ăŸăŁăŠ

    No full text
    Proton MR spectra of the brain, especially those measured at short and intermediate echo times, contain signals from mobile macromolecules (MM). A description of the main MM is provided in this consensus paper. These broad peaks of MM underlie the narrower peaks of metabolites and often complicate their quantification but they also may have potential importance as biomarkers in specific diseases. Thus, separation of broad MM signals from low molecular weight metabolites enables accurate determination of metabolite concentrations and is of primary interest in many studies. Other studies attempt to understand the origin of the MM spectrum, to decompose it into individual spectral regions or peaks and to use the components of the MM spectrum as markers of various physiological or pathological conditions in biomedical research or clinical practice. The aim of this consensus paper is to provide an overview and some recommendations on how to handle the MM signals in different types of studies together with a list of open issues in the field, which are all summarized at the end of the paper
    corecore