1,988 research outputs found

    On Shimura's decomposition

    Full text link
    Let kk be an odd integer 3\ge 3 and NN a positive integer such that 4N4 \mid N. Let χ\chi be an even Dirichlet character modulo NN. Shimura decomposes the space of half-integral weight cusp forms Sk/2(N,χ)S_{k/2}(N,\chi) as a direct sum of S0(N,χ)S_0(N,\chi) (the subspace spanned by 1-variable theta- series) and Sk/2(N,χ,ϕ)S_{k/2}(N,\chi,\phi) where ϕ\phi runs through a certain family of integral weight newforms. The explicit computation of this decomposition is important for practical applications of a theorem of Waldspurger relating critical values of LL-functions of quadratic twists of newforms of even weight to coefficients of modular forms of half-integral weight.Comment: 12 pages, to appear in the International Journal of Number Theor

    Communicating to children about the COVID-19 pandemic

    Get PDF
    No Abstract

    Nurturing newborns in South Sudan series: Essential care of the newborn

    Get PDF
    No Abstract

    Chiral Properties of QCD Vacuum in Magnetars- A Nambu-Jona-Lasinio Model with Semi-Classical Approximation

    Full text link
    The breaking of chiral symmetry of light quarks at zero temperature in presence of strong quantizing magnetic fiels is studied using Nambu-Jona-Lasinio (NJL) model with Thomas-Fermi type semi-classical formalism. It is found that the dynamically generated light quark mass can never become zero if the Landau levels are populated and the mass increases with the increase of magnetic field strength.Comment: REVTEX 11 Pages, One .eps figure (included

    Measurement of Steroid Concentrations in Brain Tissue: Methodological Considerations

    Get PDF
    It is well recognized that steroids are synthesized de novo in the brain (neurosteroids). In addition, steroids circulating in the blood enter the brain. Steroids play numerous roles in the brain, such as influencing neural development, adult neuroplasticity, behavior, neuroinflammation, and neurodegenerative diseases such as Alzheimer’s disease. In order to understand the regulation and functions of steroids in the brain, it is important to directly measure steroid concentrations in brain tissue. In this brief review, we discuss methods for the detection and quantification of steroids in the brain. We concisely present the major advantages and disadvantages of different technical approaches at various experimental stages: euthanasia, tissue collection, steroid extraction, steroid separation, and steroid measurement. We discuss, among other topics, the potential effects of anesthesia and saline perfusion prior to tissue collection; microdissection via Palkovits punch; solid phase extraction; chromatographic separation of steroids; and immunoassays and mass spectrometry for steroid quantification, particularly the use of mass spectrometry for “steroid profiling.” Finally, we discuss the interpretation of local steroid concentrations, such as comparing steroid levels in brain tissue with those in the circulation (plasma vs. whole blood samples; total vs. free steroid levels). We also present reference values for a variety of steroids in different brain regions of adult rats. This brief review highlights some of the major methodological considerations at multiple experimental stages and provides a broad framework for designing studies that examine local steroid levels in the brain as well as other steroidogenic tissues, such as thymus, breast, and prostate

    Spectrochemical Investigation of di methoxy Aniline Dithiocarbamate metal complexes-Biological activity

    Get PDF
    Dithiocarbomates are a class of sulfur-based metal-chelating compounds commonly used in industry, agriculture, and medicine. 2,6 di methoxy Aniline dithiocarbamate  Complexes of Copper and Ruthenium have been prepared  and Characterized by Spectroscopic methods like IR,NMR and also analysis of Biological activity. The investigation of these complexes confirmed that the stability of metal–ligands coordination through, S & S,N atoms as bidendate chelates.

    Novel optically active lead-free relaxor ferroelectric (Ba0.6Bi0.2Li0.2)TiO3

    Full text link
    We discovered a near room temperature lead-free relaxor-ferroelectric (Ba0.6Bi0.2Li0.2)TiO3 (BBLT) having A-site compositional disordered ABO3 perovskite structure. Microstructure-property relations revealed that the chemical inhomogeneities and development of local polar nano regions (PNRs) are responsible for dielectric dispersion as a function of probe frequencies and temperatures. Rietveld analysis indicates mixed crystal structure with 80% tetragonal structure (space group P4mm) and 20% orthorhombic structure (space group Amm2) which is confirmed by the high resolution transmission electron diffraction pattern. Dielectric constant and tangent loss dispersion with and without illumination of light obey nonlinear Vogel-Fulture relation. It shows slim polarization-hysteresis (P-E) loops and excellent displacement coefficients (d33 ~ 233 pm/V) near room temperature, which gradually diminish near the maximum dielectric dispersion temperature (Tm). The underlying physics for light-sensitive dielectric dispersion was probed by X-ray photon spectroscopy (XPS) which strongly suggests that mixed valence of bismuth ions, especially Bi5+ ions, are responsible for most of the optically active centers. Ultraviolet photoemission measurements showed most of the Ti ions are in 4+ states and sit at the centers of the TiO6 octahedra, which along with asymmetric hybridization between O 2p and Bi 6s orbitals appears to be the main driving force for net polarization. This BBLT material may open a new path for environmental friendly lead-free relaxor-ferroelectric research.Comment: 23 pages, 5 figure

    In medium T-matrix for nuclear matter with three-body forces - binding energy and single particle properties

    Full text link
    We present spectral calculations of nuclear matter properties including three-body forces. Within the in-medium T-matrix approach, implemented with the CD-Bonn and Nijmegen potentials plus the three-nucleon Urbana interaction, we compute the energy per particle in symmetric and neutron matter. The three-body forces are included via an effective density dependent two-body force in the in-medium T-matrix equations. After fine tuning the parameters of the three-body force to reproduce the phenomenological saturation point in symmetric nuclear matter, we calculate the incompressibility and the energy per particle in neutron matter. We find a soft equation of state in symmetric nuclear matter but a relatively large value of the symmetry energy. We study the the influence of the three-body forces on the single-particle properties. For symmetric matter the spectral function is broadened at all momenta and all densities, while an opposite effect is found for the case of neutrons only. Noticeable modification of the spectral functions are realized only for densities above the saturation density. The modifications of the self-energy and the effective mass are not very large and appear to be strongly suppressed above the Fermi momentum.Comment: 20 pages, 11 figure

    Corporate Privacy Trend: The “Value” of Personally Identifiable Information (“PII”) Equals the “Value” of Financial Assets

    Get PDF
    Corporate America’s increasing dependence on the electronic use of personally identifiable information (“PII”) necessitates a reexamination and expansion of the traditional conception of corporate assets. PII is now a commodity that companies trade and sell. As technological development increases, aspects of day-to-day business involving PII are performed electronically in a more cost effective and efficient manner. PII, which companies obtain at little cost, has quantifiable value that is rapidly reaching a level comparable to the value of traditional financial assets
    corecore