302 research outputs found

    Transmembrane Domain Single-Nucleotide Polymorphisms Impair Expression and Transport Activity of ABC Transporter ABCG2

    Get PDF
    To study the function and expression of nine naturally occurring single-nucleotide polymorphisms (G406R, F431L, S441N, P480L, F489L, M515R, L525R, A528T and T542A) that are predicted to reside in the transmembrane regions of the ABC transporter ABCG2. The transport activity of the variants was tested in inside-out membrane vesicles from Sf9 insect and human derived HEK293 cells overexpressing ABCG2. Lucifer Yellow and estrone sulfate were used as probe substrates of activity. The expression levels and cellular localization of the variants was compared to the wild-type ABCG2 by western blotting and immunofluorescence microscopy. All studied variants of ABCG2 displayed markedly decreased transport in both Sf9-ABCG2 and HEK293-ABCG2 vesicles. Impaired transport could be explained for some variants by altered expression levels and cellular localization. Moreover, the destructive effect on transport activity of variants G406R, P480L, M515R and T542A is, to our knowledge, reported for the first time. These results indicate that the transmembrane region of ABCG2 is sensitive to amino acid substitution and that patients harboring these ABCG2 variant forms could suffer from unexpected pharmacokinetic events of ABCG2 substrate drugs or have an increased risk for diseases such as gout where ABCG2 is implicated.Peer reviewe

    Association of CSF proteins with tau and amyloid β levels in asymptomatic 70-year-olds

    Get PDF
    BACKGROUND: Increased knowledge of the evolution of molecular changes in neurodegenerative disorders such as Alzheimer's disease (AD) is important for the understanding of disease pathophysiology and also crucial to be able to identify and validate disease biomarkers. While several biological changes that occur early in the disease development have already been recognized, the need for further characterization of the pathophysiological mechanisms behind AD still remains. METHODS: In this study, we investigated cerebrospinal fluid (CSF) levels of 104 proteins in 307 asymptomatic 70-year-olds from the H70 Gothenburg Birth Cohort Studies using a multiplexed antibody- and bead-based technology. RESULTS: The protein levels were first correlated with the core AD CSF biomarker concentrations of total tau, phospho-tau and amyloid beta (Aβ42) in all individuals. Sixty-three proteins showed significant correlations to either total tau, phospho-tau or Aβ42. Thereafter, individuals were divided based on CSF Aβ42/Aβ40 ratio and Clinical Dementia Rating (CDR) score to determine if early changes in pathology and cognition had an effect on the correlations. We compared the associations of the analysed proteins with CSF markers between groups and found 33 proteins displaying significantly different associations for amyloid-positive individuals and amyloid-negative individuals, as defined by the CSF Aβ42/Aβ40 ratio. No differences in the associations could be seen for individuals divided by CDR score. CONCLUSIONS: We identified a series of transmembrane proteins, proteins associated with or anchored to the plasma membrane, and proteins involved in or connected to synaptic vesicle transport to be associated with CSF biomarkers of amyloid and tau pathology in AD. Further studies are needed to explore these proteins' role in AD pathophysiology

    Origin of the photoemission final-state effects in Bi2Sr2CaCu2O8 by very-low-energy electron diffraction

    Full text link
    Very-low-energy electron diffraction with a support of full-potential band calculations is used to achieve the energy positions, K// dispersions, lifetimes and Fourier compositions of the photoemission final states in Bi2Sr2CaCu2O8 at low excitation energies. Highly structured final states explain the dramatic matrix element effects in photoemission. Intense c(2x2) diffraction reveals a significant extrinsic contribution to the shadow Fermi surface. The final-state diffraction effects can be utilized to tune the photoemission experiment on specific valence states or Fermi surface replicas.Comment: 4 pages, 3 Postscript figures, submitted to Phys. Rev. Lett; major revision

    Evidence of Strong Electron Correlations in Gamma-Iron

    Full text link
    Single-particle excitation spectra of gamma-Fe in the paramagnetic state have been investigated by means of the first-principles dynamical coherent potential approximation theory which has recently been developed. It is found that the central peak in the density of states consisting of the t2g bands is destroyed by electron correlations, and the Mott-Hubbard type correlated bands appear. The results indicate that the gamma-Fe can behave as correlated electrons at high temperatures.Comment: 7 pages, 3 figures, to be published in J. Phys. Soc. Jpn. Vol.78, No.9 (2009

    Study of the pressure effects in TiOCl by ab initio calculations

    Full text link
    Electronic structure calculations on the low dimensional spin-1/2 compound TiOCl were performed at several pressures in the orthorhombic phase, finding that the structure is quasi-one-dimensional. The Ti3+ (d1) ions have one t2g orbital occupied (dyz) with a large hopping integral along the b direction of the crystal. The most important magnetic coupling is Ti-Ti along the b axis. The transition temperature (Tc) has a linear evolution with pressure, and at about 10 GPa this Tc is close to room temperature, leading to a room temperature spin-Peierls insulator-insulator transition, with an important reduction of the charge gap in agreement with the experiment. On the high-pressure monoclinic phase, TiOCl presents two possible dimerized structures, with a long or short dimerization. Long dimerized state occurs above 15 GPa, and below this pressure the short dimerized structure is the more stable phase.Comment: 3 pages, 3 embedded figures, 1 table. A. Pi\~neiro, et al.,J. Magn. Magn. Mater. (2009) (accepted

    Identification of Genes Contributing to the Virulence of Francisella tularensis SCHU S4 in a Mouse Intradermal Infection Model

    Get PDF
    Background: Francisella tularensis is a highly virulent human pathogen. The most virulent strains belong to subspecies tularensis and these strains cause a sometimes fatal disease. Despite an intense recent research effort, there is very limited information available that explains the unique features of subspecies tularensis strains that distinguish them from other F. tularensis strains and that explain their high virulence. Here we report the use of targeted mutagenesis to investigate the roles of various genes or pathways for the virulence of strain SCHU S4, the type strain of subspecies tularensis. Methodology/Principal Findings: The virulence of SCHU S4 mutants was assessed by following the outcome of infection after intradermal administration of graded doses of bacteria. By this route, the LD\u2085\u2080 of the SCHU S4 strain is one CFU. The virulence of 20 in-frame deletion mutants and 37 transposon mutants was assessed. A majority of the mutants did not show increased prolonged time to death, among them notably \u394pyrB and \u394recA. Of the remaining, mutations in six unique targets, tolC, rep, FTT0609, FTT1149c, ahpC, and hfq resulted in significantly prolonged time to death and mutations in nine targets, rplA, wbtI, iglB, iglD, purL, purF, ggt, kdtA, and glpX, led to marked attenuation with an LD\u2085\u2080 of >10\ub3 CFU. In fact, the latter seven mutants showed very marked attenuation with an LD\u2085\u2080 of 6510\u2077 CFU. Conclusions/Significance: The results demonstrate that the characterization of targeted mutants yielded important information about essential virulence determinants that will help to identify the so far little understood extreme virulence of F. tularensis subspecies tularensis.Peer reviewed: YesNRC publication: Ye

    Characterization of lethal inhalational infection with Francisella tularensis in the common marmoset (Callithrix jacchus)

    Get PDF
    The intracellular Gram-negative pathogen Francisella tularensis is the causative agent of tularaemia and is prevalent in many countries in the northern hemisphere. To determine whether the common marmoset (Callithrix jacchus) would be a suitable non-human primate model of inhalational tularaemia, a pathophysiology study was undertaken. Ten animals were challenged with ∼102 c.f.u. F. tularensis strain SCHU S4 (F. tularensis subsp. tularensis). To look for trends in the infection, pairs of animals were sacrificed at 24 h intervals between 0 and 96 h post-challenge and blood and organs were assessed for bacteriology, pathology and haematological and immunological parameters. The first indication of infection was a raised core temperature at 3 days post-challenge. This coincided with a number of other factors: a rapid increase in the number of bacteria isolated from all organs, more pronounced gross pathology and histopathology, and an increase in the immunological response. As the disease progressed, higher bacterial and cytokine levels were detected. More extensive pathology was observed, with multifocal lesions seen in the lungs, liver and spleen. Disease progression in the common marmoset appears to be consistent with human clinical and pathological features of tularaemia, indicating that this may be a suitable animal model for the investigation of novel medical interventions such as vaccines or therapeutics
    corecore