563 research outputs found

    The Role of TLR4 in the Paclitaxel Effects on Neuronal Growth In Vitro

    Get PDF
    Paclitaxel (Pac) is an antitumor agent that is widely used for treatment of solid cancers. While being effective as a chemotherapeutic agent, Pac in high doses is neurotoxic, specifically targeting sensory innervations. In view of these toxic effects associated with conventional chemotherapy, decreasing the dose of Pac has been recently suggested as an alternative approach, which might limit neurotoxicity and immunosuppression. However, it remains unclear if low doses of Pac retain its neurotoxic properties or might exhibit unusual effects on neuronal cells. The goal of this study was to analyze the concentration-dependent effect of Pac on isolated and cultured DRG neuronal cells from wild-type and TLR4 knockout mice. Three different morphological parameters were analyzed: the number of neurons which developed neurites, the number of neurites per cell and the total length of neurites per cell. Our data demonstrate that low concentrations of Pac (0.1 nM and 0.5 nM) do not influence the neuronal growth in cultures in both wild type and TLR4 knockout mice. Higher concentrations of Pac (1-100 nM) had a significant effect on DRG neurons from wild type mice, affecting the number of neurons which developed neurites, number of neurites per cell, and the length of neurites. In DRG from TLR4 knockout mice high concentrations of Pac showed a similar effect on the number of neurons which developed neurites and the length of neurites. At the same time, the number of neurites per cell, indicating the process of growth cone initiation, was not affected by high concentrations of Pac. Thus, our data showed that Pac in high concentrations has a significant damaging effect on axonal growth and that this effect is partially mediated through TLR4 pathways. Low doses of Pac are devoid of neuronal toxicity and thus can be safely used in a chemomodulation mode. © 2013 Ustinova et al

    Chemomodulation of human dendritic cell function by antineoplastic agents in low noncytotoxic concentrations

    Get PDF
    The dose-delivery schedule of conventional chemotherapy, which determines its efficacy and toxicity, is based on the maximum tolerated dose. This strategy has lead to cure and disease control in a significant number of patients but is associated with significant short-term and long-term toxicity. Recent data demonstrate that moderately low-dose chemotherapy may be efficiently combined with immunotherapy, particularly with dendritic cell (DC) vaccines, to improve the overall therapeutic efficacy. However, the direct effects of low and ultra-low concentrations on DCs are still unknown. Here we characterized the effects of low noncytotoxic concentrations of different classes of chemotherapeutic agents on human DCs in vitro. DCs treated with antimicrotubule agents vincristine, vinblastine, and paclitaxel or with antimetabolites 5-aza-2-deoxycytidine and methotrexate, showed increased expression of CD83 and CD40 molecules. Expression of CD80 on DCs was also stimulated by vinblastine, paclitaxel, azacytidine, methotrexate, and mitomycin C used in low nontoxic concentrations. Furthermore, 5-aza-2-deoxycytidine, methotrexate, and mitomycin C increased the ability of human DCs to stimulate proliferation of allogeneic T lymphocytes. Thus, our data demonstrate for the first time that in low noncytotoxic concentrations chemotherapeutic agents do not induce apoptosis of DCs, but directly enhance DC maturation and function. This suggests that modulation of human DCs by noncytotoxic concentrations of antineoplastic drugs, i.e. chemomodulation, might represent a novel approach for up-regulation of functional activity of resident DCs in the tumor microenvironment or improving the efficacy of DCs prepared ex vivo for subsequent vaccinations

    Biodiversity and species interactions: extending Lotka-Volterra community theory

    Get PDF
    A new analysis of the nearly century-old Lotka-Volterra theory allows us to link species interactions to biodiversity patterns, including: species abundance distributions, estimates of total community size, patterns of community invasibility, and predicted responses to disturbance. Based on a few restrictive assumptions about species interactions, our calculations require only that the community is sufficiently large to allow a mean-field approximation. We develop this analysis to show how an initial assemblage of species with varying interaction strengths is predicted to sort out into the final community based on the species' predicted target densities. The sorting process yields predictions of covarying patterns of species abundance, community size, and species interaction strengths. These predictions can be tested using enrichment experiments, examination of latitudinal and productivity gradients, and features of community assembly

    Producer Nutritional Quality Controls Ecosystem Trophic Structure

    Get PDF
    Trophic structure, or the distribution of biomass among producers and consumers, determines key ecosystem values, such as the abundance of infectious, harvestable or conservation target species, and the storage and cycling of carbon and nutrients. There has been much debate on what controls ecosystem trophic structure, yet the answer is still elusive. Here we show that the nutritional quality of primary producers controls the trophic structure of ecosystems. By increasing the efficiency of trophic transfer, higher producer nutritional quality results in steeper ecosystem trophic structure, and those changes are more pronounced in terrestrial than in aquatic ecosystems probably due to the more stringent nutritional limitation of terrestrial herbivores. These results explain why ecosystems composed of highly nutritional primary producers feature high consumer productivity, fast energy recycling, and reduced carbon accumulation. Anthropogenic changes in producer nutritional quality, via changes in trophic structure, may alter the values and functions of ecosystems, and those alterations may be more important in terrestrial ecosystems

    Immunodominant PstS1 antigen of mycobacterium tuberculosis is a potent biological response modifier for the treatment of bladder cancer

    Get PDF
    BACKGROUND: Bacillus Calmette Guérin (BCG)-immunotherapy has a well-documented and successful clinical history in the treatment of bladder cancer. However, regularly observed side effects, a certain degree of nonresponders and restriction to superficial cancers remain a major obstacle. Therefore, alternative treatment strategies are intensively being explored. We report a novel approach of using a well defined immunostimulatory component of Mycobacterium tuberculosis for the treatment of bladder cancer. The phosphate transport protein PstS1 which represents the phosphate binding component of a mycobacterial phosphate uptake system is known to be a potent immunostimulatory antigen of M. tuberculosis. This preclinical study was designed to test the potential of recombinant PstS1 to serve as a non-viable and defined immunotherapeutic agent for intravesical bladder cancer therapy. METHODS: Mononuclear cells (PBMCs) were isolated from human peripheral blood and stimulated with PstS1 for seven days. The activation of PBMCs was determined by chromium release assay, IFN-γ ELISA and measurement of lymphocyte proliferation. The potential of PstS1 to activate monocyte-derived human dendritic cells (DC) was determined by flow cytometric analysis of the marker molecules CD83 and CD86 as well as the release of the cytokines TNF-α and IL-12. Survival of presensitized and intravesically treated, tumor-bearing mice was analyzed by Kaplan-Meier curve and log rank test. Local and systemic immune response in PstS1-immunotherapy was investigated by anti-PstS1-specific ELISA, splenocyte proliferation assay and immunohistochemistry. RESULTS: Our in vitro experiments showed that PstS1 is able to stimulate cytotoxicity, IFN-γ release and proliferation of PBMCs. Further investigations showed the potential of PstS1 to activate monocyte-derived human dendritic cells (DC). In vivo studies in an orthotopic murine bladder cancer model demonstrated the therapeutic potential of intravesically applied PstS1. Immunohistochemical analysis and splenocyte restimulation assay revealed that local and systemic immune responses were triggered by intravesical PstS1-immunotherapy. CONCLUSION: Our results demonstrate profound in vitro activation of human immune cells by recombinant PstS1. In addition, intravesical PstS1 immunotherapy induced strong local and systemic immune responses together with substantial anti-tumor activity in a preclinical mouse model. Thus, we have identified recombinant PstS1 antigen as a potent immunotherapeutic drug for cancer therapy

    Differential Levels of Stress Proteins (HSPs) in Male and Female Daphnia magna in Response to Thermal Stress: A Consequence of Sex-Related Behavioral Differences?

    Get PDF
    In two independent experiments, we compared: (1) water depth selection (and accompanying temperature selection) by male and female Daphnia magna under different kinds of environmental stress, including the presence of filamentous cyanobacteria, the risk of predation from fish, and the presence of toxic compounds; and (2) sex-dependent production of heat shock proteins (HSP60, 70, and 90) in response to a sudden change in temperature. Male D. magna selected deep water strata, which offer a relatively stable environment, and thereby avoided the threat of predation and the presence of toxic compounds in surface waters. Correlated with this behavior, males reduce their molecular defenses against stress, such as the production of heat shock proteins (HSPs), and do not maintain the physiological machinery that triggers an increase in HSP levels in response to stress. In contrast, female D. magna actively select habitats that offer optimal conditions for growth and production of offspring. Consequently, females are exposed to variable environmental conditions that may be associated with increased stress. To permit survival in these different habitats, D. magna females require molecular mechanisms to protect their cells from rapid changes in stress levels. Thus, they maintain high constitutive levels of the heat shock proteins from HSP 60, 70, and 90 families, and they have the potential to further enhance the production of the majority of these proteins under stress conditions. The results of this study indicate that the separate habitats selected by male and female D. magna result in different patterns of HSP production, leading us to hypothesize that that male and female Daphnia magna adopt different strategies to maximize the fitness of the species

    Tumor-derived interleukin-10 as a prognostic factor in stage III patients undergoing adjuvant treatment with an autologous melanoma cell vaccine.

    Get PDF
    OBJECTIVES: Interleukin-10 (IL-10) downregulates T-cell-mediated immune responses. We studied the association between IL-10 production by freshly isolated melanoma cell suspensions in vitro and overall survival in patients undergoing adjuvant treatment with a vaccine prepared from the same autologous melanoma cells modified with a hapten, dinitrophenyl (DNP). METHODS: Forty-four patients with cutaneous melanoma (29 stage III and 15 stage IV) were prospectively evaluated. Tumor cells were extracted from metastatic deposits for production of DNP-modified autologous melanoma cell vaccine. Small aliquots of the melanoma cell suspensions were separated prior to vaccine processing and cultured overnight for IL-10 production. Based on a blind assessment of the distribution of IL-10 levels in the culture supernatants, a cutoff of 200 pg/ml was used to define high versus low IL-10 producers. Cox regression model was used for multivariate analysis. Overall survival was calculated using the Kaplan-Meier method, and survival curves were compared with the log-rank test. RESULTS: Out of 44 patients, 29 were low and 15 were high IL-10 producers. The median OS was significantly worse for high compared with low IL-10 producers (10.5 months vs. 42 months; P = 0.022). In stage III patients, the multivariate hazard ratio for high versus low IL-10 producers was 2.92 (95% CI, 1.04-8.20; P = 0.041). The corresponding hazard ratio in stage IV patients was 0.92 (95% CI, 1.04-8.20; P = 0.888). CONCLUSIONS: High IL-10 production in the tumor microenvironment could be a determinant of clinical outcomes in stage III melanoma patients receiving autologous melanoma cell vaccine

    Predator Dispersal Determines the Effect of Connectivity on Prey Diversity

    Get PDF
    Linking local communities to a metacommunity can positively affect diversity by enabling immigration of dispersal-limited species and maintenance of sink populations. However, connectivity can also negatively affect diversity by allowing the spread of strong competitors or predators. In a microcosm experiment with five ciliate species as prey and a copepod as an efficient generalist predator, we analysed the effect of connectivity on prey species richness in metacommunities that were either unconnected, connected for the prey, or connected for both prey and predator. Presence and absence of predator dispersal was cross-classified with low and high connectivity. The effect of connectivity on local and regional richness strongly depended on whether corridors were open for the predator. Local richness was initially positively affected by connectivity through rescue of species from stochastic extinctions. With predator dispersal, however, this positive effect soon turned negative as the predator spread over the metacommunity. Regional richness was unaffected by connectivity when local communities were connected only for the prey, while predator dispersal resulted in a pronounced decrease of regional richness. The level of connectivity influenced the speed of richness decline, with regional species extinctions being delayed for one week in weakly connected metacommunities. While connectivity enabled rescue of prey species from stochastic extinctions, deterministic extinctions due to predation were not overcome through reimmigration from predator-free refuges. Prey reimmigrating into these sink habitats appeared to be directly converted into increased predator abundance. Connectivity thus had a positive effect on the predator, even when the predator was not dispersing itself. Our study illustrates that dispersal of a species with strong negative effects on other community members shapes the dispersal-diversity relationship. When connections enable the spread of a generalist predator, positive effects of connectivity on prey species richness are outweighed by regional extinctions through predation

    Inflammatory response gene polymorphisms and their relationship with colorectal cancer risk

    Get PDF
    <p>Abstract</p> <p>Backgroud</p> <p>Patients with chronic inflammatory bowel disease (IBD) are at an increased risk of colorectal cancer (CRC) and it is estimated that one in six persons diagnosed with IBD will develop CRC. This fact suggests that genetic variations in inflammatory response genes may act as CRC disease risk modifiers.</p> <p>Methods</p> <p>In order to test this hypothesis we investigated a series of polymorphisms in 6 genes (NOD2, DLG5, OCTN1, OCTN2, IL4, TNFα) associated with the inflammatory response on a group of 607 consecutive newly diagnosed colorectal cancer patients and compared the results to controls (350 consecutive newborns and 607 age, sex and geographically matched controls).</p> <p>Results</p> <p>Of the six genes only one polymorphism in TNFα(-1031T/T) showed any tendency to be associated with disease risk (64.9% for controls and 71.4% for CRC) which we further characterized on a larger cohort of CRC patients and found a more profound relationship between the TNFα -1031T/T genotype and disease (64.5% for controls vs 74.7% for CRC cases above 70 yrs). Then, we investigated this result and identified a suggestive tendency, linking the TNFα -1031T/T genotype and a previously identified change in the CARD15/NOD2 gene (OR = 1.87; p = 0,02 for CRC cases above 60 yrs).</p> <p>Conclusion</p> <p>The association of polymorphisms in genes involved in the inflammatory response and CRC onset suggest that there are genetic changes capable of influencing disease risk in older persons.</p

    Phase Equilibria in the Fe-Mo-Ti Ternary System at 1173 K (900 °C) and 1023 K (750 °C)

    Get PDF
    Alloys with fine-scale eutectic microstructures comprising Ti-based A2 and TiFe B2 phases have been shown to have excellent mechanical properties. In this study, the potential of alloys with further refined A2-B2 microstructures formed through solid-state precipitation has been explored by analyzing a series of six alloys within the Fe-Mo-Ti ternary system. Partial isothermal sections of this system at 1173 K (900 °C) and 1023 K (750 °C) were constructed, from which the ternary solubility limits of the A2 (Ti, Mo), B2 TiFe, D85_5 Fe7_7Mo6_6 , and C14 Fe2_2Ti phases were determined. With these data, the change in solubility of Fe in the A2 phase with temperature, which provides the driving force for precipitation of B2 TiFe, was determined and used to predict the maximum potential volume fraction of B2 TiFe precipitates that may be formed in an A2 (Ti, Mo) matrix.Rolls-Royce/EPSRC Strategic Partnership (EP/H022309/1, EP/H500375/1, and EP/M005607/1
    corecore