49 research outputs found

    Comparison of the characteristics of long-term users of electronic cigarettes versus nicotine replacement therapy: A cross-sectional survey of English ex-smokers and current smokers

    Get PDF
    Electronic cigarettes (ECs) and nicotine replacement therapy (NRT) are non-combustible nicotine delivery devices being widely used as a partial or a complete long-term substitute for smoking. Little is known about the characteristics of long-term users, their smoking behaviour, attachment to smoking, experience of nicotine withdrawal symptoms, or their views on these devices. This study aimed to provide preliminary evidence on this and compare users of the different products

    Periodic density functional theory calculations of bulk and the (010) surface of goethite

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Goethite is a common and reactive mineral in the environment. The transport of contaminants and anaerobic respiration of microbes are significantly affected by adsorption and reduction reactions involving goethite. An understanding of the mineral-water interface of goethite is critical for determining the molecular-scale mechanisms of adsorption and reduction reactions. In this study, periodic density functional theory (DFT) calculations were performed on the mineral goethite and its (010) surface, using the Vienna <it>Ab Initio </it>Simulation Package (VASP).</p> <p>Results</p> <p>Calculations of the bulk mineral structure accurately reproduced the observed crystal structure and vibrational frequencies, suggesting that this computational methodology was suitable for modeling the goethite-water interface. Energy-minimized structures of bare, hydrated (one H<sub>2</sub>O layer) and solvated (three H<sub>2</sub>O layers) (010) surfaces were calculated for 1 × 1 and 3 × 3 unit cell slabs. A good correlation between the calculated and observed vibrational frequencies was found for the 1 × 1 solvated surface. However, differences between the 1 × 1 and 3 × 3 slab calculations indicated that larger models may be necessary to simulate the relaxation of water at the interface. Comparison of two hydrated surfaces with molecularly and dissociatively adsorbed H<sub>2</sub>O showed a significantly lower potential energy for the former.</p> <p>Conclusion</p> <p>Surface Fe-O and (Fe)O-H bond lengths are reported that may be useful in surface complexation models (SCM) of the goethite (010) surface. These bond lengths were found to change significantly as a function of solvation (i.e., addition of two extra H<sub>2</sub>O layers above the surface), indicating that this parameter should be carefully considered in future SCM studies of metal oxide-water interfaces.</p

    Mechanical response of the left ventricle during AC induced hemodynamic collapse

    No full text
    Medical equipment can unintentionally allow the flow of small amounts of AC current through the patient causing hemodynamic collapse without fibrillation. This study examines the mechanical response of the left ventricle during AC induced hemodynamic collapse. Six dogs received 5 seconds of AC current stimulation ranging from 4-160 Hz and 10-1000 μA to the right ventricle. A quadripolar catheter was placed in the apex of the left ventricle to measure left ventricular volume. Short-axis ultrasound images were recorded to measure left ventricular cross sectional area and wall thickness. Our results showed that the mean volume of the left ventricle during collapse was significantly smaller (p \u3c 0.05) than the mean volume preceding collapse. Cross sectional area also decreased significantly and wall thickness increased. This suggests that the heart assumes a contracted, systole-like state during collapse
    corecore