900 research outputs found
Inertial and dimensional effects on the instability of a thin film
We consider here the effects of inertia on the instability of a flat liquid
film under the effects of capillary and intermolecular forces (van der Waals
interaction). Firstly, we perform the linear stability analysis within the long
wave approximation, which shows that the inclusion of inertia does not produce
new regions of instability other than the one previously known from the usual
lubrication case. The wavelength, , corresponding to he maximum
growth, , and the critical (marginal) wavelength do not change at
all. The most affected feature of the instability under an increase of the
Laplace number is the noticeable decrease of the growth rates of the unstable
modes. In order to put in evidence the effects of the bidimensional aspects of
the flow (neglected in the long wave approximation), we also calculate the
dispersion relation of the instability from the linearized version of the
complete Navier-Stokes (N-S) equation. Unlike the long wave approximation, the
bidimensional model shows that can vary significantly with inertia
when the aspect ratio of the film is not sufficiently small. We also perform
numerical simulations of the nonlinear N-S equations and analyze to which
extent the linear predictions can be applied depending on both the amount of
inertia involved and the aspect ratio of the film
Large variation in the boundary-condition slippage for a rarefied gas flowing between two surfaces
We study the slippage of a gas along mobile rigid walls in the sphere-plane
confined geometry and find that it varies considerably with pressure. The
classical no-slip boundary condition valid at ambient pressure changes
continuously to an almost perfect slip condition in a primary vacuum. Our study
emphasizes the key role played by the mean free-path of the gas molecules on
the interaction between a confined fluid and solid surfaces and further
demonstrates that the macroscopic hydrodynamics approach can be used with
confidence even in a primary vacuum environment where it is intuitively
expected to fail
Casimir force measurements in Au-Au and Au-Si cavities at low temperature
We report on measurements of the Casimir force in a sphere-plane geometry
using a cryogenic force microscope to move the force probe in situ over
different materials. We show how the electrostatic environment of the
interacting surfaces plays an important role in weak force measurements and can
overcome the Casimir force at large distance. After minimizing these parasitic
forces, we measure the Casimir force between a gold-coated sphere and either a
gold-coated or a heavily doped silicon surface in the 100-400 nm distance
range. We compare the experimental data with theoretical predictions and
discuss the consequence of a systematic error in the scanner calibration on the
agreement between experiment and theory. The relative force over the two
surfaces compares favorably with theory at short distance, showing that this
Casimir force experiment is sensitive to the dielectric properties of the
interacting surfaces.Comment: accepted for publication in Physical Review
Bayesian online change point detection with Hilbert space approximate Student-t process
In this paper, we introduce a variant of Bayesian online change point detection with a reduced-rank Student-t process (TP) and dependent Student-t noise, as a nonparametric time series model. Our method builds and improves upon the state-of-the-art Gaussian process (GP) change point model benchmark of Saatçi et al. (2010). The Student-t process generalizes the concept of a GP and hence yields a more flexible alternative. Additionally, unlike a GP, the predictive variance explicitly depends on the training observations, while the use of an entangled Student-t noise model preserves analytical tractability. Our approach also uses a Hilbert space reduced-rank representation of the TP kernel, derived from an eigenfunction expansion of the Laplace operator (Solin & Särkkä, 2020), to alleviate its computational complexity. Improvements in prediction and training time are demonstrated with real-world data sets
Sparse Spectral Bayesian Permanental Process with Generalized Kernel
We introduce a novel scheme for Bayesian inference on permanental processes which models the Poisson intensity as the square of a Gaussian process. Combining generalized kernels and a Fourier features-based representation of the Gaussian process with a Laplace approximation to the posterior, we achieve a fast and efficient inference that does not require numerical integration over the input space, allows kernel design and scales linearly with the number of events. Our method builds and improves upon the state-of-the-art Laplace Bayesian point process benchmark of Walder and Bishop (2017), demonstrated on both synthetic, real-world temporal and large spatial data sets
Inhomogeneous superconductivity induced in a weak ferromagnet
Under certain conditions, the order parameter induced by a superconductor (S)
in a ferromagnet (F) can be inhomogeneous and oscillating, which results e.g.
in the so-called pi-coupling in S/F/S junctions. In principle, the
inhomogeneous state can be induced at T_c as function of the F-layer thickness
d_F in S/F bilayers and multilayers, which should result in a dip-like
characteristic of T_c(d_F). We show the results of measurements on the S/F
system Nb/Cu_{1-x}Ni_x, for Ni-concentrations in the range x = 0.5-0.7, where
such effects might be expected. We find that the critical thickness for the
occurrence of superconductivity is still relatively high, even for these weak
ferromagnets. The resulting dip then is intrinsically shallow and difficult to
observe, which explains the lack of a clear signature in the T_c(d_F) data.Comment: 4 pages, 4 figures. To be publishedin Physica C (proceedings of the
Second Euroconference on Vortex Matter in Superconductors, Crete, 2001
pi-Junction behavior and Andreev bound states in Kondo quantum dots with superconducting leads
We investigate the temperature- and coupling-dependent transport through
Kondo dot contacts with symmetric superconducting s-wave leads. For finite
temperature T we use a superconducting extension of a selfconsistent auxiliary
boson scheme, termed SNCA, while at T=0 a perturbative renormalization group
treatment is applied. The finite-temperature phase diagram for the 0--pi
transition of the Josephson current in the junction is established and related
to the phase-dependent position of the subgap Kondo resonance with respect to
the Fermi energy. The conductance of the contact is evaluated in the zero-bias
limit. It approaches zero in the low-temperature regime, however, at finite T
its characteristics are changed through the coupling- and temperature-dependent
0--pi transition.Comment: 12 pages, 12 figure
Droplet actuation induced by coalescence: experimental evidences and phenomenological modeling
This paper considers the interaction between two droplets placed on a
substrate in immediate vicinity. We show here that when the two droplets are of
different fluids and especially when one of the droplet is highly volatile, a
wealth of fascinating phenomena can be observed. In particular, the interaction
may result in the actuation of the droplet system, i.e. its displacement over a
finite length. In order to control this displacement, we consider droplets
confined on a hydrophilic stripe created by plasma-treating a PDMS substrate.
This controlled actuation opens up unexplored opportunities in the field of
microfluidics. In order to explain the observed actuation phenomenon, we
propose a simple phenomenological model based on Newton's second law and a
simple balance between the driving force arising from surface energy gradients
and the viscous resistive force. This simple model is able to reproduce
qualitatively and quantitatively the observed droplet dynamics
Imaging Electron Wave Functions Inside Open Quantum Rings
Combining Scanning Gate Microscopy (SGM) experiments and simulations, we
demonstrate low temperature imaging of electron probability density
in embedded mesoscopic quantum rings (QRs). The tip-induced
conductance modulations share the same temperature dependence as the
Aharonov-Bohm effect, indicating that they originate from electron wavefunction
interferences. Simulations of both and SGM conductance maps
reproduce the main experimental observations and link fringes in SGM images to
.Comment: new titl
- …