783 research outputs found

    Allpass Feedback Delay Networks

    Full text link
    In the 1960s, Schroeder and Logan introduced delay line-based allpass filters, which are still popular due to their computational efficiency and versatile applicability in artificial reverberation, decorrelation, and dispersive system design. In this work, we extend the theory of allpass systems to any arbitrary connection of delay lines, namely feedback delay networks (FDNs). We present a characterization of uniallpass FDNs, i.e., FDNs, which are allpass for an arbitrary choice of delays. Further, we develop a solution to the completion problem, i.e., given an FDN feedback matrix to determine the remaining gain parameters such that the FDN is allpass. Particularly useful for the completion problem are feedback matrices, which yield a homogeneous decay of all system modes. Finally, we apply the uniallpass characterization to previous FDN designs, namely, Schroeder's series allpass and Gardner's nested allpass for single-input, single-output systems, and, Poletti's unitary reverberator for multi-input, multi-output systems and demonstrate the significant extension of the design space

    Do You Hear What I Hear? Discernment and Dialogue in a Secular Age

    Get PDF
    This Participatory Action Research (PAR) utilized a mixed methods approach to address an adaptive challenge in a Lutheran church in a bedroom community in a small town and rural setting. The research involved implementing PAR interventions that cultivated four spiritual capacities: see, hear, know, and say within the realm of faith formation. Results suggest the Holy Spirit initiated a process of cultural adaptation as participants began reframing their world view, having their missional imagination transformed, discerning the triune God’s active presence, and engaging in dialogue

    The auditory perceived aperture position of the transition between rooms

    Get PDF
    Funding Information: This research was supported by the Human Optimised XR (HumOR) Project. The authors appreciate the contribution of Aleksi Öyry in the listening test design. Publisher Copyright: © 2022 Author(s).This exploratory study investigates the phenomenon of the auditory perceived aperture position (APAP): the point at which one feels they are in the boundary between two adjoined spaces, judged only using auditory senses. The APAP is likely the combined perception of multiple simultaneous auditory cue changes, such as energy, reverberation time, envelopment, decay slope shape, and the direction, amplitude, and colouration of direct and reverberant sound arrivals. A framework for a rendering-free listening test is presented and conducted in situ, avoiding possible inaccuracies from acoustic simulations, impulse response measurements, and auralisation to assess how close the APAP is to the physical aperture position under blindfold conditions, for multiple source positions and two room pairs. Results indicate that the APAP is generally within ± 1 m of the physical aperture position, though reverberation amount, listener orientation, and source position affect precision. Comparison to objective metrics suggests that the APAP generally falls within the period of greatest acoustical change. This study illustrates the non-trivial nature of acoustical room transitions and the detail required for their plausible reproduction in dynamic rendering and game audio engines.Peer reviewe

    Modal Decomposition of Feedback Delay Networks

    Full text link
    Feedback delay networks (FDNs) belong to a general class of recursive filters which are widely used in sound synthesis and physical modeling applications. We present a numerical technique to compute the modal decomposition of the FDN transfer function. The proposed pole finding algorithm is based on the Ehrlich-Aberth iteration for matrix polynomials and has improved computational performance of up to three orders of magnitude compared to a scalar polynomial root finder. We demonstrate how explicit knowledge of the FDN's modal behavior facilitates analysis and improvements for artificial reverberation. The statistical distribution of mode frequency and residue magnitudes demonstrate that relatively few modes contribute a large portion of impulse response energy

    Predicting perceptual transparency of head-worn devices

    Get PDF
    | openaire: EC/H2020/812719/EU//VRACEAcoustically transparent head-worn devices are a key component of auditory augmented reality systems, in which both real and virtual sound sources are presented to a listener simultaneously. Head-worn devices can exhibit high transparency simply through their physical design but in practice will always obstruct the sound field to some extent. In this study, a method for predicting the perceptual transparency of head-worn devices is presented using numerical analysis of device measurements, testing both coloration and localization in the horizontal and median plane. Firstly, listening experiments are conducted to assess perceived coloration and localization impairments. Secondly, head-related transfer functions of a dummy head wearing the head-worn devices are measured, and auditory models are used to numerically quantify the introduced perceptual effects. The results show that the tested auditory models are capable of predicting perceptual transparency and are therefore robust in applications that they were not initially designed for.Peer reviewe

    Resynthesis of Spatial Room Impulse Response tails With anisotropic multi-slope decays

    Get PDF
    Spatial room impulse responses (SRIRs) capture room acoustics with directional information. SRIRs measured in coupled rooms and spaces with non-uniform absorption distribution may exhibit anisotropic reverberation decays and multiple decay slopes. However, noisy measurements with low signal-to-noise ratios pose issues in analysis and reproduction in practice. This paper presents a method for resynthesis of the late decay of anisotropic SRIRs, effectively removing noise from SRIR measurements. The method accounts for both multi-slope decays and directional reverberation. A spherical filter bank extracts directionally constrained signals from Ambisonic input, which are then analyzed and parameterized in terms of multiple exponential decays and a noise floor. The noisy late reverberation is then resynthesized from the estimated parameters using modal synthesis, and the restored SRIR is reconstructed as Ambisonic signals. The method is evaluated both numerically and perceptually, which shows that SRIRs can be denoised with minimal error as long as parts of the decay slope are above the noise level, with signal-to-noise ratios as low as 40 dB in the presented experiment. The method can be used to increase the perceived spatial audio quality of noise-impaired SRIRs.Peer reviewe

    Penetrating 3-D Imaging at 4- and 25-m Range Using a Submillimeter-Wave Radar

    Get PDF
    We show experimentally that a high-resolution imaging radar operating at 576–605 GHz is capable of detecting weapons concealed by clothing at standoff ranges of 4–25 m. We also demonstrate the critical advantage of 3-D image reconstruction for visualizing hidden objects using active-illumination coherent terahertz imaging. The present system can image a torso with <1 cm resolution at 4 m standoff in about five minutes. Greater standoff distances and much higher frame rates should be achievable by capitalizing on the bandwidth, output power, and compactness of solid state Schottky-diode based terahertz mixers and multiplied sources

    Cassava root peel as a replacement for maize in diets for growing pigs: effects on energy and nutrient digestibility, performance and carcass characteristics

    Get PDF
    Two experiments were conducted to evaluate cassava root peel (CRP) as diet component for fattening pigs. In the first experiment, ten male pigs were used to investigate the nutrient digestibility and the nutritive value of CRP as replacement for maize in the diet at 0 %, 30 %, 40 %, 50 % and 60 %, while supplementing free amino acids (fAA). During two experimental periods, faeces were quantitatively collected and analysed for chemical composition. In the second experiment, 40 pigs received the same diets as in Experiment 1, and daily feed intake and weekly weight changes were recorded. Four pigs per diet were slaughtered at 70 kg body weight to evaluate carcass traits. Digestibility of dry and organic matter, crude protein, acid detergent fibre and gross energy were depressed (p0.05) at 60 % CRP; digestible energy content (MJ kg^(−1) DM) was 15.4 at 0 % CRP and 12.7 at 60 % CRP. In the second experiment, CRP inclusion had only a small impact on feed intake, weight gain and feed conversion ratio (p0.05) as well as on the length of the small intestine and the Longissimus dorsi muscle area. The missing correlation of daily weight gain and feed-to-gain ratio up to a CRP inclusion of 40 % indicates that negative effects of CRP on pig growth can be avoided by respecting upper feeding limits. Hence, a combined use of CRP and fAA can reduce feeding costs for small-scale pig farmers in countries where this crop-by product is available in large amounts
    • 

    corecore