252 research outputs found
A device for collecting in-situ samples of suspended sediment for microscopic analysis
An in-situ sampler for collecting small samples of suspended sediment for microscopic analysis bas been built and tested. The device rapidly freezes a thin layer of water entrapping all of the suspended particles in it; when the sampler is recovered, the disc of ice is placed on a suitable substrate and freeze-dried. The particles can then be examined in an undisturbed state with a light microscope or with an electron microscope
Strain and order-parameter coupling in Ni-Mn-Ga Heusler alloys from resonant ultrasound spectroscopy
Resonant ultrasound spectroscopy and magnetic susceptibility experiments have
been used to characterize strain coupling phenomena associated with structural
and magnetic properties of the shape-memory Heusler alloy series
NiMnGa (, 2.5, 5.0, and 7.5). All samples exhibit
a martensitic transformation at temperature and ferromagnetic ordering at
temperature , while the pure end member () also has a premartensitic
transition at , giving four different scenarios: ,
without premartensitic transition, , and .
Fundamental differences in elastic properties i.e., stiffening versus
softening, are explained in terms of coupling of shear strains with three
discrete order parameters relating to magnetic ordering, a soft mode and the
electronic instability responsible for the large strains typical of martensitic
transitions. Linear-quadratic or biquadratic coupling between these order
parameters, either directly or indirectly via the common strains, is then used
to explain the stabilities of the different structures. Acoustic losses are
attributed to critical slowing down at the premartensite transition, to the
mobility of interphases between coexisting phases at the martensitic transition
and to mobility of some aspect of the twin walls under applied stress down to
the lowest temperatures at which measurements were made.Comment: 9 pages, 5 figure
Strain Coupling, Microstructure Dynamics and Acoustic Mode Softening in Germanium Telluride
GeTe is a material of intense topical interest due to its potential in the context of phase-change and nanowire memory devices, as a base for thermoelectric materials and as a ferroelectric. The combination of a soft optic mode and a Peierls distortion contributes large strains at the cubic - rhombohedral phase transition near 625 K and the role of these has been investigated through their influence on elastic and anelastic properties by resonant ultrasound spectroscopy. The underlying physics is revealed by softening of the elastic constants by ~30-45%, due to strong coupling of shear and volume strains with the driving order parameter and consistent with an improper ferroelastic transition which is weakly first order. The magnitude of the softening is permissive of the transition mechanism involving a significant order/disorder component. A Debye loss peak in the vicinity of 180 K is attributed to freezing of the motion of ferroelastic twin walls and the activation energy of ~0.07 eV is attributed to control by switching of the configuration of long and short Ge-Te bonds in the first coordination sphere around Ge. Precursor softening as the transition is approached from above can be described with a Vogel-Fulcher expression with a similar activation energy, which is attributed to coupling of acoustic modes with an unseen central mode that arises from dynamical clusters with local ordering of the Peierls distortion. The strain relaxation and ferroelastic behaviour of GeTe depend on both displacive and order/disorder effects but the dynamics of switching will be determined by changes in the configuration of distorted GeTe6 octahedra, with a rather small activation energy barrier
Magnetic field and in situ stress dependence of elastic behavior in EuTiO3 from resonant ultrasound spectroscopy
Magneto-electric coupling phenomena in EuTiO3 are of considerable fundamental interest and are also understood to be key to reported multiferroic behavior in strained films, which exhibit distinctly different properties to the bulk. Here the magneto-elastic coupling of EuTiO3 is investigated by resonant ultrasound spectroscopy with in-situ applied magnetic field and stress as a function of temperature ranging from temperatures above the structural transition temperature, Ts, to below the antiferromagnetic ordering temperature Tn. One single crystal and two polycrystalline samples are investigated and compared to each other. Both paramagnetic and diamagnetic transducer carriers are used, allowing an examination of the effect of both stress and magnetic field on the behaviour of the sample. The properties are reported in constant field/variable temperature and in constant temperature/variable field mode where substantial differences between both data sets are observed. In addition, elastic and magnetic poling at high fields and stresses at low temperature has been performed in order to trace the history dependence of the elastic constants. Four different temperature regions are identified, characterized by unusual elastic responses. The low temperature phase diagram has been explored and found to exhibit rich complexity. The data evidence a considerable relaxation of elastic constants at high temperatures, but with little effect from magnetic field alone above 20 K, in addition to the known low temperature coupling.MAC acknowledges support from NERC and EPSRC (grants NE/B505738/1 and EP/I036079/1, respectively). CP acknowledges financial support in Greece through FP7-REGPOT-2012-2013-1, and in Singapore through Award No. NRF-CRP-4-2008-04 of the Competitive Research Programme. LJS acknowledges the support of the National Science Centre (NCN) through grant MAESTRO no. DEC-2012/04/A/ST3/00342. Dr Albert Migliori (Los Alamos National Laboratory) is thanked for invaluable assistance in creating the RUS system with in-situ magnetic field. Prof Jim Scott (U. Cambridge) is thanked for his advice and assistance in interpreting the data and improving the manuscript. Tony Dennis (U. Cambridge) collected the SQUID data.This is the author accepted manuscript. The final version is available from the American Physical Society via http://dx.doi.org/10.1103/PhysRevB.93.05410
Magnetoelastic relaxations in EuTiO3
The multiferroic properties of EuTiO3 are greatly enhanced when a sample is strained, signifying that coupling between strain and structural, magnetic or ferroelectric order parameters is extremely important. Here resonant ultrasound spectroscopy has been used to investigate strain coupling effects, as well as possible additional phase transitions, through their influence on elastic and anelastic relaxations that occur as a function of temperature between 2 and 300 K and with applied magnetic field up to 14 T. Antiferromagnetic ordering is accompanied by acoustic loss and softening, and a weak magnetoelastic effect is also associated with the change in magnetization direction below . Changes in loss due to the influence of magnetic field suggest the existence of magnetic defects which couple with strain and may play a role in pinning of ferroelastic twin walls
Strain behavior and lattice dynamics in Ni50Mn35In15
The lattice dynamics in the polycrystalline shape-memory Heusler alloy Ni50Mn35In15 have been studied by means of resonant ultrasound spectroscopy (RUS). RUS spectra were collected in a frequency range 100–1200 kHz between 10 and 350 K. Ni50Mn35In15 exhibits a ferromagnetic transition at 313 K in the austenite phase and a martensitic transition at 248 K accompanied by a change of the magnetic state. Furthermore it displays a paramagnetic to ferrimagnetic transition within the martensitic phase. We determined the temperature dependence of the shear modulus and the acoustic attenuation of Ni50Mn35In15 and compared it with magnetization data. Following the structural softening, which accompanies the martensitic transition as a pretransitional phenomenon, a strong stiffening of the lattice is observed at the martensitic magneto-structural transition. Only a weak magnetoelastic coupling is evidenced at the Curie temperatures both in austenite and martensite phases. The large acoustic damping in the martensitic phase compared with the austenitic phase reflects the motion of the twin walls, which freezes out in the low temperature region
Recommended from our members
Structural disorder in the key lead-free piezoelectric materials, K <inf>x</inf>Na<inf>1-x</inf> NbO<inf>3</inf> and (1 - X) Na<inf>0.5</inf> Bi<inf>0.5</inf> TiO<inf>3</inf> + x BaTiO<inf>3</inf>
Using electron diffraction, trends in the local structural behaviour of the NNb (KNN x) and the (NBT-()BT) systems are investigated. In KNN, electron diffraction shows a single plane of diffuse intensity perpendicular to [010] across the entire phase diagram, indicating the existence of ferroelectric disorder along this axis. An additional characteristic pattern of diffuse scattering is also observed, involving rods of diffuse intensity running along the and directions of the perovskite substructure and indicative of octahedral tilt disorder about these axes. Similarly, in the NBT-xBT system, rods of diffuse intensity running along the directions of the perovskite substructure are observed, again indicating octahedral tilt disorder. Ferroelectric-like disorder is also observed in highly BT doped samples, and a continuous change from the “rhombohedral” structure of NBT to the “tetragonal” structure of NBT-12BT is seen from characteristic variation in observed superstructure reflections. A crystal chemical rationalisation of these results is performed, and the implications for structure and properties are discussed.Peer Reviewe
Studies of the room‐temperature multiferroic Pb(Fe0.5Ta0.5)0.4(Zr0.53Ti0.47)0.6O3: resonant ultrasound spectroscopy, dielectric, and magnetic phenomena
Recently, lead iron tantalate/lead zirconium titanate (PZTFT) was demonstrated to possess large, but unreliable, magnetoelectric coupling at room temperature. Such large coupling would be desirable for device applications but reproducibility would also be critical. To better understand the coupling, the properties of all 3 ferroic order parameters, elastic, electric, and magnetic, believed to be present in the material across a range of temperatures, are investigated. In high temperature elastic data, an anomaly is observed at the orthorhombic mm2 to tetragonal 4mm transition, Tot = 475 K, and a softening trend is observed as the temperature is increased toward 1300 K, where the material is known to become cubic. Thermal degradation makes it impos- sible to measure elastic behavior up to this temperature, however. In the low temperature region, there are elastic anomalies near ≈40 K and in the range 160–245 K. The former is interpreted as being due to a magnetic ordering transition and the latter is interpreted as a hysteretic regime of mixed rhom- bohedral and orthorhombic structures. Electrical and magnetic data collected below room temperature show anomalies at remarkably similar temperature ranges to the elastic data. These observations are used to suggest that the three order parameters in PZTFT are strongly coupled
- …