2,144 research outputs found
National Party Politics and Supranational Politics in the European Union: New Evidence from the European Parliament
Political parties play an important role in structuring political competition at different levels of governance in the European Union (EU). The political parties that contest national elections also participate in the EU legislative institutions, with the governing parties at the national level participating in the Council of Ministers and a broad range of national parties represented in the European Parliament (EP). Recent research indicates that national parties in the EP have formed ideological coalitions -- party groups -- that represent transnational political interests. These party groups appear to manage legislative behavior such that national interests -- which dominate the Council of Ministers -- are subjugated to ideological conflict. In this paper, we demonstrate that the roll-call vote evidence for the impact of party groups in the EP is misleading. Because party groups have incentives to select votes for roll call so as to hide or feature particular voting patterns, the true character of political conflict is never revealed in roll calls.
Why Are Students Not Majoring in Information Systems?
The purpose of this study was to examine some of the factors that influence and impact business students when they select their major and, more particularly, to examine why students are not majoring in information systems. Students in an entry level business class responded that they were more knowledgeable about careers in management, marketing, accounting, and finance than they were about careers in information systems. These business students indicated that they are looking for majors that will be interesting, provide them with job security initially and over their careers, and pay them well. The most important information sources used by these students in their major selection decision were information on college/department websites, brochures about the major, and information on the Internet. When asked why they were not majoring in information systems, the top two reasons given were not what I wanted to do and subject not of interest
Maximum Azimuthal Anisotropy of Neutrons from Nb-Nb Collisions at 400 AMeV and the Nuclear Equation of State
We measured the first azimuthal distributions of triple--differential cross
sections of neutrons emitted in heavy-ion collisions, and compared their
maximum azimuthal anisotropy ratios with Boltzmann--Uehling--Uhlenbeck (BUU)
calculations with a momentum-dependent interaction. The BUU calculations agree
with the triple- and double-differential cross sections for positive rapidity
neutrons emitted at polar angles from 7 to 27 degrees; however, the maximum
azimuthal anisotropy ratio for these free neutrons is insensitive to the size
of the nuclear incompressibility modulus K characterizing the nuclear matter
equation of state.Comment: Typeset using ReVTeX, with 3 ps figs., uuencoded and appende
Recommended from our members
Genetic reporter analysis reveals an expandable reservoir of OCT4+ cells in adult skin
The transcription factor Oct4 (Pou5f1) is a critical regulator of pluripotency in embryonic and induced pluripotent stem cells. Therefore, Oct4 expression might identify somatic stem cell populations with inherent multipotent potential or a propensity for facilitated reprogramming. However, analysis of Oct4 expression is confounded by Oct4 pseudogenes or non-pluripotency-related isoforms. Systematic analysis of a transgenic Oct4-EGFP reporter mouse identified testis and skin as two principle sources of Oct4+ cells in postnatal mice. While the prevalence of GFP+ cells in testis rapidly declined with age, the skin-resident GFP+ population expanded in a cyclical fashion. These cells were identified as epidermal stem cells dwelling in the stem cell niche of the hair follicle, which endogenously expressed all principle reprogramming factors at low levels. Interestingly, skin wounding or non-traumatic hair removal robustly expanded the GFP+ epidermal cell pool not only locally, but also in uninjured skin areas, demonstrating the existence of a systemic response. Thus, the epithelial stem cell niche of the hair follicle harbors an expandable pool of Oct4+ stem cells, which might be useful for therapeutic cell transfer or facilitated reprogramming. Electronic supplementary material The online version of this article (doi: 10.1186/2045-9769-3-9) contains supplementary material, which is available to authorized users
Neutrons from multiplicity-selected Au-Au collisions at 150, 250, 400, and 650 AMeV
We measured neutron triple-differential cross sections from
multiplicity-selected Au-Au collisions at 150, 250, 400, and 650 \AMeV. The
reaction plane for each collision was estimated from the summed transverse
velocity vector of the charged fragments emitted in the collision. We examined
the azimuthal distribution of the triple-differential cross sections as a
function of the polar angle and the neutron rapidity. We extracted the average
in--plane transverse momentum and the normalized
observable , where is the neutron
transverse momentum, as a function of the neutron center-of-mass rapidity, and
we examined the dependence of these observables on beam energy. These
collective flow observables for neutrons, which are consistent with those of
protons plus bound nucleons from the Plastic Ball Group, agree with the
Boltzmann--Uehling--Uhlenbeck (BUU) calculations with a momentum--dependent
interaction. Also, we calculated the polar-angle-integrated maximum azimuthal
anisotropy ratio R from the value of .Comment: 20 LaTeX pages. 11 figures to be faxed on request, send email to
sender's addres
Neutrons from multiplicity-selected La-La and Nb-Nb collisions at 400A MeV and La-La collisions at 250A MeV
Triple-differential cross sections for neutrons from high-multiplicity La-La
collisions at 250 and 400 MeV per nucleon and Nb-Nb collisions at 400 MeV per
nucleon were measured at several polar angles as a function of the azimuthal
angle with respect to the reaction plane of the collision. The reaction plane
was determined by a transverse-velocity method with the capability of
identifying charged-particles with Z=1, Z=2, and Z > 2. The flow of neutrons
was extracted from the slope at mid-rapidity of the curve of the average
in-plane momentum vs the center-of-mass rapidity. The squeeze-out of the
participant neutrons was observed in a direction normal to the reaction plane
in the normalized momentum coordinates in the center-of-mass system.
Experimental results of the neutron squeeze-out were compared with BUU
calculations. The polar-angle dependence of the maximum azimuthal anisotropy
ratio was found to be insensitive to the mass of the colliding
nuclei and the beam energy. Comparison of the observed polar-angle dependence
of the maximum azimuthal anisotropy ratio with BUU calculations for
free neutrons revealed that is insensitive also to the
incompressibility modulus in the nuclear equation of state.Comment: ReVTeX, 16 pages, 17 figures. To be published in Physical Review
A suicide gene approach using the human pro-apoptotic protein tBid inhibits HIV-1 replication
<p>Abstract</p> <p>Background</p> <p>Regulated expression of suicide genes is a powerful tool to eliminate specific subsets of cells and will find widespread usage in both basic and applied science. A promising example is the specific elimination of human immunodeficiency virus type 1 (HIV-1) infected cells by LTR-driven suicide genes. The success of this approach, however, depends on a fast and effective suicide gene, which is expressed exclusively in HIV-1 infected cells. These preconditions have not yet been completely fulfilled and, thus, success of suicide approaches has been limited so far. We tested truncated Bid (tBid), a human pro-apoptotic protein that induces apoptosis very rapidly and efficiently, as suicide gene for gene therapy against HIV-1 infection.</p> <p>Results</p> <p>When tBid was introduced into the HIV-1 LTR-based, Tat- and Rev-dependent transgene expression vector pLRed(INS)<sub>2</sub>R, very efficient induction of apoptosis was observed within 24 hours, but only in the presence of both HIV-1 regulatory proteins Tat and Rev. Induction of apoptosis was not observed in their absence. Cells containing this vector rapidly died when transfected with plasmids containing full-length viral genomic DNA, completely eliminating the chance for HIV-1 replication. Viral replication was also strongly reduced when cells were infected with HIV-1 particles.</p> <p>Conclusions</p> <p>This suicide vector has the potential to establish a safe and effective gene therapy approach to exclusively eliminate HIV-1 infected cells before infectious virus particles are released.</p
Biosafety Studies of a Clinically Applicable Lentiviral Vector for the Gene Therapy of Artemis-SCID
Genetic deficiency of the nuclease DCLRE1C/Artemis causes radiosensitive severe combined immunodeficiency (RS-SCID) with lack of peripheral T and B cells and increased sensitivity to ionizing radiations. Gene therapy based on transplanting autologous gene-modified hematopoietic stem cells could significantly improve the health of patients with RS-SCID by correcting their immune system. A lentiviral vector expressing physiological levels of human ARTEMIS mRNA from an EF1a promoter without post-transcriptional regulation was developed as a safe clinically applicable candidate for RS-SCID gene therapy. The vector was purified in GMP-comparable conditions and was not toxic in vitro or in vivo. Long-term engraftment of vector-transduced hematopoietic cells was achieved in irradiated Artemis-deficient mice following primary and secondary transplantation (6 months each). Vector-treated mice displayed T and B lymphopoiesis and polyclonal T cells, had structured lymphoid tissues, and produced immunoglobulins. Benign signs of inflammation were noted following secondary transplants, likely a feature of the model. There was no evidence of transgene toxicity and no induction of hematopoietic malignancy. In vitro, the vector had low genotoxic potential on murine hematopoietic progenitor cells using an immortalization assay. Altogether, these preclinical data show safety and efficacy, and support further development of the vector for the gene therapy of RS-SCID
- …