7,921 research outputs found

    Statistical Understanding of Quark and Lepton Masses in Gaussian Landscapes

    Get PDF
    The fundamental theory of nature may allow a large landscape of vacua. Even if the theory contains a unified gauge symmetry, the 22 flavor parameters of the Standard Model, including neutrino masses, may be largely determined by the statistics of this landscape, and not by any symmetry. Then the measured values of the flavor parameters do not lead to any fundamental symmetries, but are statistical accidents; their precise values do not provide any insights into the fundamental theory, rather the overall pattern of flavor reflects the underlying landscape. We investigate whether random selection from the statistics of a simple landscape can explain the broad patterns of quark, charged lepton, and neutrino masses and mixings. We propose Gaussian landscapes as simplified models of landscapes where Yukawa couplings result from overlap integrals of zero-mode wavefunctions in higher-dimensional supersymmetric gauge theories. In terms of just five free parameters, such landscapes can account for all gross features of flavor, including: the hierarchy of quark and charged lepton masses; small quark mixing angles, with 13 mixing less than 12 and 23 mixing; very light Majorana neutrino masses, with the solar to atmospheric neutrino mass ratio consistent with data; distributions for leptonic 12 and 23 mixings that are peaked at large values, while the distribution for 13 mixing is peaked at low values; and order unity CP violating phases in both the quark and lepton sectors. While the statistical distributions for flavor parameters are broad, the distributions are robust to changes in the geometry of the extra dimensions. Constraining the distributions by loose cuts about observed values leads to narrower distributions for neutrino measurements of 13 mixing, CP violation, and neutrinoless double beta decay.Comment: 86 pages, 26 figures, 2 tables, and table of content

    Fast complexified quaternion Fourier transform

    Full text link
    A discrete complexified quaternion Fourier transform is introduced. This is a generalization of the discrete quaternion Fourier transform to the case where either or both of the signal/image and the transform kernel are complex quaternion-valued. It is shown how to compute the transform using four standard complex Fourier transforms and the properties of the transform are briefly discussed

    Quark and Lepton Masses from Gaussian Landscapes

    Get PDF
    The flavor structure of the standard model (SM) might arise from random selection on a landscape. We propose a class of simple models, “Gaussian landscapes,” where Yukawa couplings derive from overlap integrals of Gaussian wave functions on extra-dimensions. Statistics of vacua are generated by scanning the peak positions of these zero-modes, giving probability distributions for all flavor observables. Gaussian landscapes can account for all observed flavor patterns with few free parameters. Although they give broad probability distributions, the predictions are correlated and accounting for measured parameters sharpens the distributions of future neutrino measurements

    Neutrino mixing and mass hierarchy in Gaussian landscapes

    Full text link
    The flavor structure of the Standard Model may arise from random selection on a landscape. In a class of simple models, called "Gaussian landscapes," Yukawa couplings derive from overlap integrals of Gaussian zero-mode wavefunctions on an extra-dimensional space. Statistics of vacua are generated by scanning the peak positions of these wavefunctions, giving probability distributions for all flavor observables. Gaussian landscapes can account for all of the major features of flavor, including both the small electroweak mixing in the quark sector and the large mixing observed in the lepton sector. We find that large lepton mixing stems directly from lepton doublets having broad wavefunctions on the internal manifold. Assuming the seesaw mechanism, we find the mass hierarchy among neutrinos is sensitive to the number of right-handed neutrinos, and can provide a good fit to neutrino oscillation measurements.Comment: 11 pages, 2 figure

    Experimental observation of two-dimensional fluctuation magnetization in the vicinity of T_c for low values of the magnetic field in deoxygenated YBa_2Cu_3O_{7-x}

    Full text link
    We measured isofield magnetization curves as a function of temperature in two single crystal of deoxygenated YBaCuO with T_c = 52 and 41.5 K. Isofield MvsT were obtained for fields running from 0.05 to 4 kOe. The reversible region of the magnetization curves was analyzed in terms of a scaling proposed by Prange, but searching for the best exponent Ď…\upsilon. The scaling analysis carried out for each data sample set with Ď…\upsilon=0.669, which corresponds to the 3D-xy exponent, did not produced a collapsing of curves when applied to MvsT curves data obtained for the lowest fields. The resulting analysis for the Y123 crystal with T_c = 41.5 K, shows that lower field curves collapse over the entire reversible region following the Prange's scaling with Ď…\upsilon=1, suggesting a two-dimensional behavior. It is shown that the same data obeying the Prange's scaling with Ď…\upsilon=1 for crystal with T_c = 41.5 K, as well low field data for crystal with TcT_c = 52 K, obey the known two-dimensional scaling law obtained in the lowest-Landau-level approximation.Comment: 4 pages, 3 figure

    J. Walter (Hrsg.) (1983): Sexualität und geistige Behinderung. Heidelberg: G. Schindele Verlag (162 Seiten; DM 22,-) [...] [Sammelrezension]

    Full text link
    Sammelrezension von J. Walter (Hrsg.) (1983): Sexualität und geistige Behinderung. Heidelberg: G. Schindele Verlag (162 Seiten; DM 22,-); A. Hoyler-Herrmann, J. Walter (Hrsg.) (1983): Sexualpädagogische Arbeitshilfe für geistig behinderte Erwachsene. Heidelberg: G. Schindele Verlag (102 Seiten; DM 17,-

    A Robust Solution Procedure for Hyperelastic Solids with Large Boundary Deformation

    Full text link
    Compressible Mooney-Rivlin theory has been used to model hyperelastic solids, such as rubber and porous polymers, and more recently for the modeling of soft tissues for biomedical tissues, undergoing large elastic deformations. We propose a solution procedure for Lagrangian finite element discretization of a static nonlinear compressible Mooney-Rivlin hyperelastic solid. We consider the case in which the boundary condition is a large prescribed deformation, so that mesh tangling becomes an obstacle for straightforward algorithms. Our solution procedure involves a largely geometric procedure to untangle the mesh: solution of a sequence of linear systems to obtain initial guesses for interior nodal positions for which no element is inverted. After the mesh is untangled, we take Newton iterations to converge to a mechanical equilibrium. The Newton iterations are safeguarded by a line search similar to one used in optimization. Our computational results indicate that the algorithm is up to 70 times faster than a straightforward Newton continuation procedure and is also more robust (i.e., able to tolerate much larger deformations). For a few extremely large deformations, the deformed mesh could only be computed through the use of an expensive Newton continuation method while using a tight convergence tolerance and taking very small steps.Comment: Revision of earlier version of paper. Submitted for publication in Engineering with Computers on 9 September 2010. Accepted for publication on 20 May 2011. Published online 11 June 2011. The final publication is available at http://www.springerlink.co

    A Dialectician in Diapers

    Get PDF
    • …
    corecore