494 research outputs found

    Attractor solutions for general hessence dark energy

    Full text link
    As a candidate for the dark energy, the hessence model has been recently introduced. We discuss the critical points of this model in almost general case, that is for arbitrary hessence potential and almost arbitrary hessence-background matter interaction. It is shown that in all models, there always exist some stable late-time attractors. It is shown that our general results coincide with those solutions obtained earlier for special cases, but some of them are new. These new solutions have two unique characteristics. First the hessence field has finite value in these solutions and second, their stabilities depend on the second derivative of the hessence potential.Comment: 11 pages. Add some explanations about the autonomousity of the equations, and also a conclusion section was added. To appear in Phys. Rev. D (2006

    Massive Schwinger model and its confining aspects on curved space-time

    Full text link
    Using a covariant method to regularize the composite operators, we obtain the bosonized action of the massive Schwinger model on a classical curved background. Using the solution of the bosonic effective action, the energy of two static external charges with finite and large distance separation on a static curved space-time is obtained. The confining behavior of this model is also explicitly discussed.Comment: A disscussion about the infrared regularization and also two references are added. Accepted for publication in Phys. Rev. D (2001

    Declining incidence of esophageal cancer in the Turkmen Plain, eastern part of the Caspian Littoral of Iran: A retrospective cancer surveillance

    Get PDF
    Background: Previous studies have shown that upper gastrointestinal cancers are the most common cancers in Caspian Littoral, and rate of esophageal cancer (EC) in Iranian Turkmens residing in the Eastern part of littoral are among the highest in the world. Our aim was to reassess the rate 30 years later and following socioeconomic changes in the region. Methods: A comprehensive retrospective search was undertaken to find all new cancer cases during the 1996-2000 period. Diagnosis of cancer was based on histopathological reports in 68.2, clinical and/or radiological evidence in 29.7 and death certificate only (DCO) in 2.1 of the cases. Results: A total of 5143 new cancer cases were registered of whom 3063 (59.6) were males. The median (IQR) age was 60 (44-69) years. Age-standardized rates (ASR) for all cancers in males and females were 134.7 and 104.5 per 100,000, respectively. Based on ASR, the top five common cancers in males (excluding skin cancer) were cancers of esophagus (43.4), stomach (27.8), colorectal (10.7), bladder (7.8) and oral cavity (6.3), while in females cancer of esophagus (36.3) was followed by cancers of breast (15.7), stomach (8.3) colorectal (6.6) and cervix (3.6). Conclusion: We conclude that EC incidence rate has decreased to less than half the rate reported 30 years ago, while the incidence rates of colorectal and breast cancers have increased significantly. © 2006 International Society for Preventive Oncology. Published by Elsevier Ltd. All rights reserved

    Separation of multiple time delays using new spectral estimation schemes

    Get PDF
    Includes bibliographical references.The problem of estimating multiple time delays in presence of colored noise is considered in this paper. This problem is first converted to a high-resolution frequency estimation problem. Then, the sample lagged covariance matrices of the resulting signal are computed and studied in terms of their eigenstructure. These matrices are shown to be as effective in extracting bases for the signal and noise subspaces as the standard autocorrelation matrix, which is normally used in MUSIC and the pencil-based methods. Frequency estimators are then derived using these subspaces. The effectiveness of the method is demonstrated on two examples: a standard frequency estimation problem in presence of colored noise and a real-world problem that involves separation of multiple specular components from the acoustic backscattered from an underwater target.This work was supported by the Office of Naval Research (ONR 321TS). The Technical Agent was Coastal Systems Station, Panama City, FL

    Electrostatic self-energy and Bekenstein entropy bound in the massive Schwinger model

    Full text link
    We obtain the electrostatic energy of two opposite charges near the horizon of stationary black-holes in the massive Schwinger model. Besides the confining aspects of the model, we discuss the Bekenstein entropy upper bound of a charged object using the generalized second law. We show that despite the massless case, in the massive Schwinger model the entropy of the black hole and consequently the Bekenstein bound are altered by the vacuum polarization.Comment: 14 pages, accepted for publication in "Gen. Rel. Grav. (2005)

    Dual-satellite cloud product generation using temporally updated canonical coordinate features

    Get PDF
    Includes bibliographical references.State-of-the-art cloud products are typically generated using scientific polar orbiting satellites such as the Moderate Resolution Imaging Spectroradiometer (MODIS). However, they do not allow for observation of the same region at a regular temporal frequency, rendering them ineffectual for nowcasting problems. Operational satellites such as Meteosat-8 SEVIRI, in contrast, are geostationary and provide continual data at a regular temporal frequency over a much larger region. MODIS-like cloud products cannot be directly generated from operational satellites as they typically have a smaller number of spectral bands and different wavelengths and spatial resolution. This paper applies the canonical coordinate decomposition method to estimate scientific cloud products using imagery from operational satellites. Using the proposed method features of the Meteosat-8 imagery data that are maximally coherent with the data from the MODIS are generated. These features are temporally updated at times and locations where MODIS data are unavailable using the alternating block power method. A subset of the canonical coordinates of Meteosat-8 SEVIRI is then used to create MODIS-like cloud products using several neural networks. The quality of the generated cloud products and their temporal consistency have been demonstrated on several data sets from July 2004. A benchmarking with an independent Meteosat-8-based algorithm is also provided, which shows the promise of our approach in generating MODIS-like cloud products.This work was supported by the Department of Defense Center for Geosciences/Atmospheric Research, Colorado State University, via Cooperative Agreement DAAD19-02-2-0005 with the Army Research Laboratory

    Time variable cosmological constant of holographic origin with interaction in Brans-Dicke theory

    Full text link
    Time variable cosmological constant (TVCC) of holographic origin with interaction in Brans-Dicke theory is discussed in this paper. We investigate some characters for this model, and show the evolutions of deceleration parameter and equation of state (EOS) for dark energy. It is shown that in this scenario an accelerating universe can be obtained and the evolution of EOS for dark energy can cross over the boundary of phantom divide. In addition, a geometrical diagnostic method, jerk parameter is applied to this model to distinguish it with cosmological constant.Comment: 10 pages, 9 figure

    Diffusive transport of light in three-dimensional disordered Voronoi structures

    Full text link
    The origin of diffusive transport of light in dry foams is still under debate. In this paper, we consider the random walks of photons as they are reflected or transmitted by liquid films according to the rules of ray optics. The foams are approximately modeled by three-dimensional Voronoi tessellations with varying degree of disorder. We study two cases: a constant intensity reflectance and the reflectance of thin films. Especially in the second case, we find that in the experimentally important regime for the film thicknesses, the transport-mean-free path does not significantly depend on the topological and geometrical disorder of the Voronoi foams including the periodic Kelvin foam. This may indicate that the detailed structure of foams is not crucial for understanding the diffusive transport of light. Furthermore, our theoretical values for transport-mean-free path fall in the same range as the experimental values observed in dry foams. One can therefore argue that liquid films contribute substantially to the diffusive transport of light in {dry} foams.Comment: 8 pages, 8 figure

    Diffusive transport of light in two-dimensional granular materials

    Full text link
    We study photon diffusion in a two-dimensional random packing of monodisperse disks as a simple model of granular material. We apply ray optics approximation to set up a persistent random walk for the photons. We employ Fresnel's intensity reflectance with its rich dependence on the incidence angle and polarization state of the light. We present an analytic expression for the transport-mean-free path in terms of the refractive indices of grains and host medium, grain radius, and packing fraction. We perform numerical simulations to examine our analytical result.Comment: 9 pages, 3 figure
    • …
    corecore