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Separation of Multiple Time Delays
Using New Spectral Estimation Schemes

Mohammed A. Hasan, Mahmood R. Azimi-Sadjadi,Senior Member, IEEE,and Gerald J. Dobeck

Abstract—The problem of estimating multiple time delays in
presence of colored noise is considered in this paper. This prob-
lem is first converted to a high-resolution frequency estimation
problem. Then, the sample lagged covariance matrices of the
resulting signal are computed and studied in terms of their
eigenstructure. These matrices are shown to be as effective in
extracting bases for the signal and noise subspaces as the stan-
dard autocorrelation matrix, which is normally used in MUSIC
and the pencil-based methods. Frequency estimators are then
derived using these subspaces. The effectiveness of the method is
demonstrated on two examples: a standard frequency estimation
problem in presence of colored noise and a real-world problem
that involves separation of multiple specular components from
the acoustic backscattered from an underwater target.

Index Terms—Data decimation, spectral estimation, underwa-
ter acoustics.

I. INTRODUCTION

I N UNDERWATER target detection using sonar, the pres-
ence of the targets can be verified by identifying certain

clues about the target in the backscattered signal [1]–[3]. The
first step in this process is to separate multiple specular returns
from the backscattered signal so that the residual part can be
analyzed more efficiently. Accurate separation can only be
made possible if the time delays and amplitudes of multiple
specular returns can accurately be estimated. Depending on the
target geometry, beam width, and surrounding environment,
the backscatter may contain several closely spaced specular re-
turns with different amplitudes. This makes accurate separation
of these components a very difficult task.

The problem of estimating time delays in the presence of
colored noise arises in many different fields such as radar,
sonar, seismic, and biomedical applications. The problem
is typically transformed into a harmonic retrieval problem
using Fourier transform. In recent years, there has been an
increasing interest in model-based sinusoidal estimation. These
models normally convert the nonlinear problem of estimating
the frequencies into a simpler problem of estimating the
parameters of a linear model. The desired information can
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then be extracted from the estimated model parameters. The
reliability of the first step depends on the accuracy of the
estimation procedure, and that of the second depends on the
sensitivity of the frequencies to the model parameters.

Among the well-known approaches to this problem are
Prony’s method and the maximum likelihood method [4], [5].
Prony’s method and its variants are based on the assumption
that a pure sum of sinusoids fits an autoregressive (AR)
model whose parameters can be determined from a finite
number of data points. In the presence of measurement noise,
the accuracy of Prony-type methods deteriorates rapidly. To
overcome this sensitivity problem, many alternative schemes
were proposed. Eigenvalue and singular value-based methods
such as that proposed by Tufts and Kumaresan [5] perform
well for moderate signal-to-noise-ratio (SNR) cases. In most
of these methods, the autocorrelation of a data matrix is
computed, and signal and noise subspaces are then determined
using the eigenvalues and the eigenvectors of this matrix.
First, the number of sources is determined from the number
of significant eigenvalues. The corresponding eigenvectors
then form the signal subspace, while those corresponding to
the minimal eigenvalues are chosen as a basis of the noise
subspace. The MUSIC method [6] is a procedure that utilizes
the noise subspace eigenvectors.

Generally, modern high-resolution subspace estimation
schemes are of three types.

1) extrema searching techniques like spectral MUSIC [6];
2) polynomial rooting techniques such as Root-MUSIC [7]

and Pisarenko methods [4];
3) matrix shifting methods such as ESPRIT [8] and matrix

pencil methods [9].

The statistical efficiency of these methods are studied in
[10] and [11]. However, these methods are computationally
demanding since they involve the computation of each singu-
lar eigenvector and corresponding eigenvalue. To reduce the
computational cost associated with these subspace methods,
various alternatives were proposed [12]–[14].

More recently, Nagesha and Kay [15] have developed a
maximum likelihood (ML)-based method in which the color
noise is modeled by an AR process with unknown parameters.
This method uses canonical factorization of density function
and the application of nonlinear parameter transformation in
order to reduce the problem into maximization of a concen-
trated likelihood function that is carried out numerically. In
[16], Friedlander and Francos derived a closed form exact
Craḿer–Rao bound (CRB) on the achievable accuracy for
joint estimation of unknown harmonics as the AR parameters
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of the colored noise. They also showed how this bound can
be computed from the conditional likelihood function of the
observations.

The goal of this paper is to develop new high-resolution
spectral estimation schemes to accurately estimate the time
delays associated with multiple specular components in the
acoustic backscattered signal from underwater targets. It is
shown that all the lagged data correlation matrices contained
approximately the same information about the noise and signal
subspaces. This property is used to develop several new
algorithms using high-lag correlation matrices. These methods,
which can be viewed as extensions to the MUSIC and Pencil-
based methods [6], [7], [9], are primarily used for the purpose
of signal-noise subspace decomposition in situations where
the noise is colored.

This paper is organized as follows. Section II presents
formulation of the time delay estimation problem as a sinu-
soidal frequency estimation. The MUSIC frequency estimation
scheme is then briefly reviewed. Based on correlation matrices
with lags, two new algorithms are developed in Sections III
and IV. Enhanced resolution using the decimation process and
correlations of higher order lags are presented in Section V.
Finally, simulation results on two different examples are
provided in Section VI.

II. PROBLEM FORMULATION AND FREQUENCY ESTIMATION

Let us consider the acoustic backscattered signalin the
form of

(1)

where the first term on the right-hand side represents the
effects of target specular returns and volume and surface
reverberation, and the second term accounts for the
effects of additive ambient noise. In the first term, ,

represents effects of media or reverberation,
is the transmitted or incident signal, is the unknown
delay associated with theth component, and is the symbol
for convolution operation. Reverberation results from random
distribution of acoustic scatterers due to inhomogeneities and
roughness at the top and bottom surfaces of the ocean (surface
reverberation) as well as those corresponding to biological
sources in the water column (volume reverberation). The
effects of media and reverberation can be modeled [3] by an
unknown constant gain .

Assuming bandlimited signals, (1) can be transformed into a
sinusoidal frequency estimation problem by taking the Fourier
transform of (1), dividing by , and sampling the fre-
quency axis to yield

(2)

where . Note that as in [6], the phase, which is
assumed to be an i.i.d. random variable uniformly distributed
over , is included for the sake of generality. Now,
the problem is reduced to estimating the optimum number

of sinusoids , their magnitudes , and their frequencies
using the noisy data , .

Eigenstructure methods [4]–[6] are among the most well-
known high-resolution sinusoidal estimation methods available
in the literature. The main objective of these methods is to
generate orthogonal eigenspaces consisting of the signal and
noise subspaces from the estimated autocorrelation matrix.
Frequency estimators such as MUSIC [6] can then be applied
to provide estimates of the unknown frequencies. Here, we
briefly review the conventional MUSIC method for frequency
estimation in presence of white noise.

If and are partitioned into overlapping blocks of
size , then (2) can be rewritten in vector form as

(3)

where ,
, and

,
denotes matrix transposition and . The vector

can be expressed as , where
. The vectors

are sometimes referred to as the signal vectors.
As shown in [6], the frequencies can be estimated

by decomposing the autocorrelation matrix
into the signal and noise subspaces. Note that here, sample
averaged statistics are used as approximations to the ensemble
averaged statistics since the number of blocks is usually very
large. Now, assuming that the eigenvalues of are
sorted in decreasing order so that ,
with corresponding orthogonal eigenvectors ,
respectively, if the noise is white with variance and

, then there exists an such that
. The ranges of the matrices

and
are called the signal and noise subspaces, respectively. In
the noiseless case, the column space of is the signal
subspace of the signal vectors . Practically,
by examining the eigenvalues of , we get an estimate for the

most significant eigenvalues, in which case,represents
the number of sinusoids contained in the signal part. Once
this decomposition is done, using, usually, the singular value
decomposition (SVD) algorithm [17], the MUSIC frequency
estimator [6] can be applied as

(4)

The estimate of the frequencies are generated by plotting
and identifying the peaks associated with the locations

of the ’s. Once ’s are estimated, the amplitudes can be
obtained using a least squares (LS)-based estimator.

In the sequel, we will show how correlations with lags can
be used to develop new approaches for the estimation of the
parameters of complex sinusoids corrupted with colored noise.
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III. GENERALIZED EIGENSTRUCTURE OF

LAGGED AUTOCORRELATION MATRICES

In this section, we investigate the eigenstructure of lagged
correlation matrices of sinusoids and use some of their prop-
erties to extend the eigendecomposition-based methods so
that correlations with lags can be used to extract the signal
and noise subspaces. The idea is that for a wide range of
random processes, the higher the lag, the less noisier the data
correlations are since the noise becomes more decorrelated
at higher lags. To understand the eigenstructure of lagged
autocorrelation matrices of sinusoids, assume that

, where , and
is a random process modeled by anth-order moving average
(MA) process ,
where is a zero mean white noise with variance .
This idea is similar to those in [15] and [16]. Let
be the autocorrelation function of defined by

. It can easily be verified that

for

for

holds for the autocorrelation of . Further, we have
for all . The white process is obviously

the simplest case in which holds for . This
implies that for this case, the new sequence
would contain fewer noise effects than the original one. This
observation will be used to develop algorithms for estimating
the ’s.

Proposition 3.1: Let , with
, and and are zero mean and

independent process; then, , where

(5)

and .
Proof: This result follows directly using

.
The last result implies that for , is a sum

of pure sinusoids but with squared amplitudes. Thus, like the
original signal, the sequence , is
formed of a sum of sinusoids and the autocorrelation of the
noise , which becomes zero for . Consequently,

the estimates of the frequencies and amplitudes can be done
more efficiently using . In addition, the effect of phase
does not appear in this domain, compared with the original
observation domain. This significantly simplifies the computa-
tion of the amplitudes . The next proposition reveals some
of the useful properties of the auto-correlation matrix
defined as .

Proposition 3.2: Assume that as in Proposition 3.1,
for , and , Then, we have (6),

as shown at the bottom of the page. Moreover, the following
relations hold.

i) .
ii) .
iii) .
iv) .
v) .
vi) For each integer , is of rank .

Here, is the companion matrix of the polynomial whose
roots hold the unknown frequencies

(7a)

where , and

...
...

...
...

...
... (7b)

Proof: See Appendix A.
Remark 3.1:The approximate equality ,

when is large, ensures the existence of eigenvalues of
matrix , which are close to zero. This approximation
holds well for a large class of stationary noise processes for
which as . It must be noticed that when

, matrix is singular with one-dimensional (1-D)
null space spanned by the vector .
Of course, the ultimate goal is to determine the’s from the
noisy data or the correlation sequence by gaining
eigenstructure information concerning. Since

for , the sequence can ideally
be used to determine the’s.

Remark 3.2:Postmultiplying both sides of v) of Proposi-
tion 3.2 by , where is any orthogonal matrix such that

...
...

...
...

(6)
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and is upper triangular with eigenvalues
, we obtain

. Hence, . Note
that matrices are independent of . This
provides a flexibility in choosing since is less noisy
for large . This property will be used to develop an algorithm
to recover the signal and noise subspaces, which are then used
to estimate the frequencies.

Remark 3.3:Note that vi) of Proposition 3.2 implies that if
the observed signal has no additive noise and , then the
rank of is for each integer . When noise is added
to , the resulting autocorrelation data matrix tends
to have larger generalized eigenvalues associated with the
signal subspace and smaller eigenvalues associated with
the noise subspace. Thus, by examining the diagonal elements
of in Remark 3.2, we can estimate .

As indicated in vi) of the last result, when , matrix
is singular. Its null space is determined next, where

the notation denotes the null space of .
Proposition 3.3: Assume that ; then, is

singular for each , and
span of columns of , where

...
...

...
...

...
...

...
...

(8)
Additionally

column space of

Proof: See Appendix B.
Note that the column space of and are the same

for any nonsingular matrix . For computational
convenience, matrix is typically chosen so that is
orthogonal, as in the case of MUSIC [6]. The practical
significance of Proposition 3.3 lies in the fact that it can be
used to estimate the frequencies by estimating the coefficients

of defined in Proposition 3.2. To see this, let
, and ; then

where is defined in (7a). Practically, it is not numerically
feasible to compute ; however, an orthogonal matrix that
has the same column space can easily be estimated using
the SVD decomposition. When is on the unit circle, then

. This implies that if and only if
. In the MUSIC algorithm [6], is typically

plotted for on the unit circle, and peaks are observed for
their locations. In ROOT-MUSIC [7], the zeros of are

computed over the complex plane, and the frequencies are
chosen among those close to the unit circle.

Remark 3.4:A nonzero eigenvector of has the form
, where ,

are the eigenvalues of , i.e., matrix
diagonalizes . Note that the frequency estimation problem
reduces to finding the eigenvalues of, which are the same
as those of since and are similar (Remark 3.2).

Similar results as those of Proposition 3.2 can be obtained
by defining a new matrix .
As can be observed from (6), is Hermitian if and only
if . However, for numerical advantages, we consider
the Hermitian matrix , ,
which has the following properties.

Corollary 3.4: Let and be as defined before;
then, for each integer

i) ;
ii) .

Proof: This follows from the observation that

. Corollary 3.4ii)
follows from iterating i). Q.E.D.

Multiplying both sides if Corollary 3.4ii) by , where
, yields

(9)

or equivalently

where . As in the case of , matrix
is independent of .

This result, along with Proposition 3.2, shows that
and , for , and , contain as
much information about the signal and noise subspaces as the
conventional correlation matrix in that all of these can
be utilized to determine . The nonzero eigenvectors of the
generalized eigenvalue problem (9) are the’s defined above.
Let in (9) be partitioned as such that
corresponds to the most significant eigenvalues of , and

corresponds to the least significant eigenvalues
of , respectively. Since is in the signal subspace,

, and thus,
if and only if is in the signal subspace that is spanned
by the ’s. Similarly, if and
only if is a linear combination of the ’s. By plotting

, the frequencies will
be close to the locations of the peaks of . An algorithm
that utilizes the ideas of Corollary 3.4 is presented next.

Algorithm 1:

i) Choose sufficiently large such that ,
, and estimate the lagged sample correlations
and of the data sequence for

.
ii) Solve the generalized eigenvalue problem

, and form the
decomposition .
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iii) Let and be the columns of that correspond
to the most significant eigenvalues of and the
least significant eigenvalues of , respectively.

iv) Let
. Then, the zeros of

are the estimated frequencies. Note that
if has orthogonal columns, then

. Orthogonal matrices can be au-
tomatically generated if the QZ algorithm [17], [18]
is used.

IV. EIGENSTRUCTURE OFCORRELATIONS

WITH HIGHER ORDER LAGS

As mentioned in Section III, the main motivation behind
using higher lags of correlations lies in the idea of suppressing
the effects of colored noise. This leads to a more efficient
and practical way of estimating the desired unknowns. In this
section, we extend the eigendecomposition-based methods so
that correlations with lags can be used to extract the signal
and noise subspaces, as shown in the following result.

Proposition 4.1: There exist matrices and
upper triangular matrix such that , where

and , and , where
and are as defined in (8), and and

are nonsingular matrices, i.e., and span the signal
and noise subspaces of , respectively.

Proof: It is shown in Appendix A that
and , and it follows that

Let be a nonsingular matrix that upper triangulizes
, i.e., is upper triangular;

then

where is upper triangular.
The conclusion follows by setting and

. Q.E.D.
The practical value of Proposition 4.1 is that the eigenvalues

of are the same for all and that the signal subspace
is spanned by the columns of for some nonsingular
matrix , and the noise subspace is spanned by the null space
given by the columns for , i.e., the null space is generated
by for any nonsingular matrix .
In the presence of noise, the most significant eigenvectors
of span a perturbed version of the signal subspace,
whereas the least significant eigenvectors span a
perturbed version of the noise subspace. This observation can
be utilized to develop an algorithm that can be considered to
be an extension of MUSIC. Owing to numerical robustness
reasons, the Hermitian matrix is used in
the next algorithm to determine the signal and noise subspaces
that are the same for all . In particular,

. An algorithm that
utilizes this idea is presented next.

Algorithm 2:

i) Estimate the sample correlation matrix of the data
sequence for .

ii) Compute the eigenstructure of the Hermitian matrix
so that

, where and are or-
thogonal whose columns span the signal and the noise
subspaces, respectively. Here, holds the prin-
cipal most significant eigenvalues, and holds the

nonprincipal least significant eigenvalues of
.

iii) Let
and plot . The

peaks indicate the locations of the’s.

Remark 4.1—Choices of and : As shown previously,
in the noise-free case, the matrix has rank , regard-
less of , as long as . Generally, the performance of
the estimators is largely dependent on the accuracy of signal
and noise subspace estimation from the correlation matrix of
the noisy data . For large , the columns of tend to
be closer to the signal vectors , and the smallest
eigenvalues tend to cluster around zero. This can
be justified from the following observation. If is chosen such
that , then the matrix is orthogonal, each
column of which is an eigenvector of with eigenvalue

. Thus, for sufficiently large , we may expect that the
eigenvalues and eigenvectors of will be close to the
signal vectors . The effect of the parameteron the
performance of MUSIC is studied in [11], where it is shown
that a choice of such that would give
reasonably good estimates.

To examine the effect of , let be an estimate of the
actual number of sinusoids such that . Let be a
matrix of the most significant eigenvectors, and let be
a matrix of the least significant eigenvectors. Then,
both and

hold. While underestimating
implies that has signal vectors, will display

misestimated peaks, whereas will display peaks.
This suggests that to obtain an estimate of, we can pick any

and compute the zeros of both and . The number of
peaks in both cases is .

Using similar analysis to that of [6], we can show that for
large and , the accuracy may indeed improve significantly.
The effect of on the MUSIC frequency estimator is studied
in [10] and [11], where it is demonstrated that overestimation
of leads to cleaner noise eigenvectors of . It is
noted from simulations that this method is insensitive to the
overestimation of . In most applications, the number of
sinusoids is not known aa priori. The number can be
estimated using higher order lags by using the decomposition
in ii) of Algorithm 2 above and examining the eigenvalues of
the diagonal matrix .

Remark 4.2—Estimation of the Amplitudes:Once the fre-
quencies are estimated, the amplitudes are then
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estimated by solving Vandermonde systems of equations.

...
...

...
...

...
...

to obtain

Here, . Note that this can not be applied to the
raw data because of the presence of the phase terms.

V. FREQUENCY ESTIMATION USING DATA DECIMATION

Data decimation or downsampling has been considered
before in the context of spectral estimation [19], [20]. The
main advantage of this technique is that only part of the
measured data is used, which results in a large reduction in
the computations. However, the main disadvantage of using
data decimation is that it works only if the frequencies occupy
a relatively small region; otherwise, for a large decimation
factor, aliasing will occur, leading to ambiguity in resolving
frequencies. To alleviate this problem, the frequency range
could be divided into sub-bands and filter out those outside the
band of interest. However, this will not completely eliminate
aliasing since it is very difficult to implement an ideal passband
filter. In this section, a data decimation technique in con-
junction with signal and/or noise subspace methods discussed
earlier is developed. The decimation or downsampling of
the input data sequence stretches the frequency scale by
the decimation factor , thus offering better isolation of the
neighboring frequencies and thereby reducing the interference
caused by the proximity of other frequency components.

To understand the effect of decimation, assume as before
that the signal is
decimated with decimation factor so that the decimated
signal is .
Then . Therefore,
we have (10), shown at the bottom of the page, and

As shown before, if is a colored noise process modeled
by an th-order ARMA process

, where

is a white process, then if the poles of are inside
the unit circle, we have , which leaves

as a sum of pure sinusoids for sufficiently large. In
the standard MUSIC algorithm, the matrix is used to
extract the noise and signal subspaces. If the correlation of
the noise is an exponentially decaying sequence, it is expected
that the disturbance of the noise on the correlation will
be less severe since the correlation matrix will be close
to a diagonal matrix, i.e., decimation plays a role of whitening
the noise and thus improves the performance of the MUSIC
algorithm. However, when , the elements of tend
to be relatively small, and thus, is a slightly perturbed
version of .

As mentioned before, decimation may result in aliasing,
particularly when the decimation factor is large. To alleviate
the problem of aliasing, we can use this decimation process to
estimate the ’s and the ’s, which requires
solving two problems. The main result concerning the retrieval
of the ’s using a decimation factor is given in the next
theorem.

Theorem 5.1:Assume that , and let and
be the matrices that minimize the two problems

Trace

and

Trace

respectively. Then, in the noiseless case,is similar to ,
and is similar to , where is as defined in (7b).

Proof: The proof follows from Proposition 3.2 and (7a)
and (7b).

If , the correlation matrix for the decimated signal is
of rank ; then, this problem has a unique minimizer obtained
by setting

...
...

...
...

(10)
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However, since is not known for most applications, we
solved the generalized eigenvalue problem

(11)

The solution of (11) can be obtained by an algorithm analogous
to that in Algorithm 2.

The eigenvalues of and are and
, respectively, for . Unfortunately,

these matrices are not simultaneously diagonalizable; thus,
nonsingular matrices and have to be determined so
that diag , and
diag . We can employ all the sub-bands of
downsampling (which are sometimes referred to as polyphase
components) to obtain more reliable estimates of the, i.e., by
considering all the subsampled signals ,

and computing

where

In the next algorithm, we incorporate the decimation process
with Algorithms 1 or 2.

Algorithm 3:

i) To apply decimation for resolution improvement,
choose the decimation factors, , and consider the
new signal

.
ii) Compute the covariance matrix

.
iii) Apply Algorithms 1 or 2 to estimate the frequencies

and .
iv) Compute and

for and ,
.

v) Choose the set with the best matching between’s
and ’s, i.e., . Then, the
frequencies can be estimated as .

vi) Compute the amplitudes as in Remark 4.2.

Remark 5.1:To examine the effect of decimation on the
sensitivity of parameters, consider a decimation factor.
Assuming the noise is modeled by an AR model with poles

, the polynomial that governs the poles of
this problem before decimation is

where the represents the poles of the signal, and the
represents the poles of noise. It will be assumed, as in most
applications, that the poles of the noise are strictly inside

TABLE I
VARIOUS FREQUENCY ESTIMATORS. DATA: TWO COMPLEX

SINUSOIDS AT FREQUENCIES0.2 AND 0.6 IN COLORED

NOISE. SNR= 5; 0;�5;�10 dB, DIMENSION OF DATA

VECTORSL = 30, DIMENSION OF SIGNAL SUBSPACEM = 2

the unit circle. After the noisy signal is decimated, the new
characteristic polynomial becomes

This shows that the poles corresponding to the noiseless
signal are , which still lie on the unit circle, whereas those
corresponding to the noise are. Since ’s lie inside the unit
circle, their powers get smaller in magnitude asgets larger.
This demonstrates that the effect of noise diminishes as the
decimation factor becomes large. Thus, decimation, together
with correlations of higher order lags, will have the advantage
of significantly reducing the effects of noise. However, this
entails the solution of two optimization problems, which is
offset by the reduced number of computations associated with
the decimation process.

VI. EXPERIMENTAL RESULTS

In this section, we illustrate the performance of some of the
algorithms developed in this paper on two different examples.

Example 1: Consider the data sequence generated by the
equation

where and , and . The
amplitudes of the sinusoids were and .
The SNR for either sinusoids is defined as ,
where and , are the
variances of signal and colored noise , respectively.
The lagged correlation matrices are constructed using forward-
backward method to increase the robustness. The size of each
matrix is chosen to be ( ), which in the absence of
noise has effective rank two. The QZ routine on MATLAB is
employed for the computation of the generalized eigenvectors
and eigenvalues required to implement Algorithm 1. The mean
values and standard deviations of the estimated frequencies
are given in Table I for a set of 40 random experiments
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Fig. 1. Incident and simulated backscattered for Case 1 with spectral peaks at delays= 249; 369;456;548.

Fig. 2. Incident and simulated backscattered for Case 2 with spectral peaks at delays= 201; 295;389:

for different SNR (SNR dB) and different
lagged correlations . The dimension of the signal
subspace is considered to be , using the correlation
matrix . It is noticed that the performances in these cases
are close to those obtained using the correlation matrix .

The last four rows consider the case where combination of
lagged correlation matrices, namely, is used.
The results show some improvements over those using ,

, or alone. It is also noted that false peaks will
appear if .

Example 2: Next, we consider the time-delay estimation
problem and test the performance of Algorithm 2 described
in Section IV. We examined several data sets consisting of
an incident and simulated backscattered signals. The inci-
dent signal was a wideband linear FM, and the simulated

backscattered return was generated using (1) and (2) with
and , which is a white noise

with zero mean and unit variance. The coefficientsand
were taken to be and so that

. The purpose of this study was to analyze the
performance of Algorithm 2 under various conditions such as
low amplitude and closely spaced specular components in the
simulated backscattered signals. Three simulated backscattered
signals were generated with the actual time-delays shown in
Table II. In all cases, the FM incident signal was of length
4096 samples. These cases contained four components with
nonuniform separations.

In the first case, there were four delays, as shown in Table I,
with amplitudes , , , and
with zero phase. When data vector length , ,
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Fig. 3. Incident and simulated backscattered for Case 3 with spectral peak at delay= 303; 465; 797;2082:

Fig. 4. Incident and real backscattered for Case 4 with main spectral peak at delay= 650:

and SNR dB were used, the result of Algorithm 2
is shown in Fig. 1. This result shows that if the separation
between delays is sufficiently large, we can recover the delays
very accurately within four samples in this case.

In the second case, we also have four delays as shown in
Table I with amplitudes , , , and

. When , , and SNR dB, the
results of Algorithm 2 are shown in Fig. 2. Clearly, one of
the delays is missing due to closely spaced second and third
delays. The fourth delay is detected, although its amplitude
was smaller than all the others. This is due to the fact that the
fourth time delay is well separated from the others.

In the third case, the amplitudes of the components were
, , , and . The results are

shown in Fig. 3 for when , , and SNR
dB. As can be seen, all the delays are accurately estimated:
even those with small amplitudes.

The fourth experiment involved a real backscattered signal
of length 8192. The data was obtained from a submerged
elastic target that had the form of a tapered notched cylinder
with flattened ends and rivets and an aspect ratio of 4 to 1.
The same linear FM incident signal with a time-bandwidth
product of was used. The signal was set to
sweep over the midfrequency band [1]. The returns from each
object were collected over in increments to produce
72 data records of differing aspect angle per object. Note
that corresponds to broadside incident. The measurements
were performed under controlled operating and environmental
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TABLE II
ACTUAL DELAYS VERSUS ESTIMATED ONES FOR THREE CASES

conditions. It was observed in the results that depending on the
angle of incidence, the number of specular reflections varies.
For the broadside incidence, the only prominent component
was detected around . Fig. 4 shows the results for
this case. The above results indicate the effectiveness of the
proposed schemes in detecting multiple specular returns and
estimating their associated delays.

VII. CONCLUSION

Correlations with lags were used to develop new approaches
for the estimation of the time delays associated with multiple
specular components in the acoustic backscattered signal.
The signal parameters were estimated by using MUSIC-
like and pencil-based methods. It was demonstrated through
simulations that when the additive noise is colored with
unknown autocorrelation function, these algorithms are partic-
ularly effective in estimating the time delays (or frequencies).
The main advantage of the estimators proposed in this paper
is that using correlations of higher lags significantly reduces
the effects of additive noise, hence leading to more robust
estimators. Decimation was shown to improve this robustness
property. Simulation results on the two examples clearly
demonstrated the effectiveness of the proposed schemes.

APPENDIX A
PROOF OF PROPOSITION 3.2

Equation (6) follows from Proposition 3.1. It can easily be
verified that , where

...
...

...
...

(A1)
diag , and diag ,

. This decomposition property of
is used to prove i)–vi). Clearly, we have

and , which give
.

Similarly,
. Analogously, we can show that

. Items ii), iv), and v) in Proposition
3.2 follow from iterating i) and iii). To prove vi), we have
that the matrix is of rank when since the
principal submatrix of is nonsingular with
determinant ,
where is the determinant of the matrix . The last
conclusion can also be seen from the factorization

where , i.e.,

...
...

...
...

(A2)

which is clearly of rank , provided for .

APPENDIX B
PROOF OF PROPOSITION 3.3

Let ; then, is of rank
, , for

and . The last equation means that the null space
of is contained in the null space of . It can
easily be noticed that .
Therefore, . From Proposition 3.2,

is of rank , and hence, is -
dimensional. It follows that . To
show that , we have

. This
gives . Since rank and

are the same, and each equals, and the conclusion
follows.
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