1,979 research outputs found

    Protein-mediated DNA Loop Formation and Breakdown in a Fluctuating Environment

    Full text link
    Living cells provide a fluctuating, out-of-equilibrium environment in which genes must coordinate cellular function. DNA looping, which is a common means of regulating transcription, is very much a stochastic process; the loops arise from the thermal motion of the DNA and other fluctuations of the cellular environment. We present single-molecule measurements of DNA loop formation and breakdown when an artificial fluctuating force, applied to mimic a fluctuating cellular environment, is imposed on the DNA. We show that loop formation is greatly enhanced in the presence of noise of only a fraction of kBTk_B T, yet find that hypothetical regulatory schemes that employ mechanical tension in the DNA--as a sensitive switch to control transcription--can be surprisingly robust due to a fortuitous cancellation of noise effects

    Urban-rural comparison of adult day care centres in British Columbia

    Get PDF
    In 1979, Adult Day Care became a part of the B.C. Ministry of Health\u27s Continuing Care Program. By 1989, there were 49 centres in operation in the province and it was felt timely to undertake a comprehensive review of the Adult Day Care component of the Continuing Care Program. As part of that review and as an aid for future planning, the Simon Fraser University Gerontology Research Centre was commissioned to conduct a study that would provide information concerning: 1. activities and services provided by the 49 centres; 2. characteristics of the clients currently being served; 3. reasons clients are referred to Adult Day Care; 4. reasons some referred clients do not attend; and 5. the referral process and the interface between the Long Term Care Program and Adult Day Care

    Adult day care centres in British Columbia : their operating characteristics, activities and services, clients, and interface with the long term care program. Final report.

    Get PDF
    Previews the literature concerning the objectives, models of service delivery, operating characteristics, activities, services and clients of Adult Day Care (ADC) Centres. Presents findings from a 3-phase study conducted in British Columbia. In phase 1, a 100% sample of B.C. ADCs provided information on their operating characteristics, activities and services. In phase 2, the characteristics of 479 new admissions to 22 ADCs were determined. Phase 3 focused on reasons for referring clients to ADC, why some referred clients do not attend and on the interface between ADCs and the province\u27s Continuing Care Program

    Feshbach resonances and collapsing Bose-Einstein condensates

    Full text link
    We investigate the quantum state of burst atoms seen in the recent Rb-85 experiments at JILA. We show that the presence of a resonance scattering state can lead to a pairing instability generating an outflow of atoms with energy comparable to that observed. A resonance effective field theory is used to study this dynamical process in an inhomogeneous system with spherical symmetry

    Virtual light-by-light scattering and the g factor of a bound electron

    Full text link
    The contribution of the light-by-light diagram to the g factor of electron and muon bound in Coulomb field is obtained. For electron in a ground state, our results are in good agreement with the results of other authors obtained numerically for large Z. For relatively small Z our results have essentially higher accuracy as compared to the previous ones. For muonic atoms, the contribution is obtained for the first time with the high accuracy in whole region of Z.Comment: 10 pages, 3 figures, RevTe

    Superfluidity and binary-correlations within clusters of fermions

    Full text link
    We propose a method for simulating the behaviour of small clusters of particles that explicitly accounts for all mean-field and binary-correlation effects. Our approach leads to a set of variational equations that can be used to study both the dynamics and thermodynamics of these clusters. As an illustration of this method, we explore the BCS-BEC crossover in the simple model of four fermions, interacting with finite-range potentials, in a harmonic potential. We find, in the crossover regime, that the particles prefer to occupy two distinct pair states as opposed to the one assumed by BCS theory

    Strained tetragonal states and Bain paths in metals

    Full text link
    Paths of tetragonal states between two phases of a material, such as bcc and fcc, are called Bain paths. Two simple Bain paths can be defined in terms of special imposed stresses, one of which applies directly to strained epitaxial films. Each path goes far into the range of nonlinear elasticity and reaches a range of structural parameters in which the structure is inherently unstable. In this paper we identify and analyze the general properties of these paths by density functional theory. Special examples include vanadium, cobalt and copper, and the epitaxial path is used to identify an epitaxial film as related uniquely to a bulk phase.Comment: RevTeX, 4 pages, 4 figures, submitted to Phys. Rev. Let

    Finite nuclear size and Lamb shift of p-wave atomic states

    Get PDF
    We consider corrections to the Lamb shift of p-wave atomic states due to the finite nuclear size (FNS). In other words, these are radiative corrections to the atomic isotop shift related to FNS. It is shown that the structure of the corrections is qualitatively different from that for s-wave states. The perturbation theory expansion for the relative correction for a p1/2p_{1/2}-state starts from αln(1/Zα)\alpha\ln(1/Z\alpha)-term, while for s1/2s_{1/2}-states it starts from Zα2Z\alpha^2 term. Here α\alpha is the fine structure constant and ZZ is the nuclear charge. In the present work we calculate the α\alpha-terms for 2p2p-states, the result for 2p1/22p_{1/2}-state reads (8α/9π)[ln(1/(Zα)2)+0.710](8\alpha/9\pi)[\ln(1/(Z\alpha)^2)+0.710]. Even more interesting are p3/2p_{3/2}-states. In this case the ``correction'' is by several orders of magnitude larger than the ``leading'' FNS shift.Comment: 4 pages, 2 figure

    Bose-Einstein Condensation from a Rotating Thermal Cloud: Vortex Nucleation and Lattice Formation

    Get PDF
    We develop a stochastic Gross-Pitaveskii theory suitable for the study of Bose-Einstein condensation in a {\em rotating} dilute Bose gas. The theory is used to model the dynamical and equilibrium properties of a rapidly rotating Bose gas quenched through the critical point for condensation, as in the experiment of Haljan et al. [Phys. Rev. Lett., 87, 21043 (2001)]. In contrast to stirring a vortex-free condensate, where topological constraints require that vortices enter from the edge of the condensate, we find that phase defects in the initial non-condensed cloud are trapped en masse in the emerging condensate. Bose-stimulated condensate growth proceeds into a disordered vortex configuration. At sufficiently low temperature the vortices then order into a regular Abrikosov lattice in thermal equilibrium with the rotating cloud. We calculate the effect of thermal fluctuations on vortex ordering in the final gas at different temperatures, and find that the BEC transition is accompanied by lattice melting associated with diminishing long range correlations between vortices across the system.Comment: 15 pages, 12 figure

    Dynamical formation and interaction of bright solitary waves and solitons in the collapse of Bose-Einstein condensates with attractive interactions

    Full text link
    We model the dynamics of formation of multiple, long-lived, bright solitary waves in the collapse of Bose-Einstein condensates with attractive interactions as studied in the experiment of Cornish et al. [Phys. Rev. Lett. 96 (2006) 170401]. Using both mean-field and quantum field simulation techniques, we find that while a number of separated wave packets form as observed in the experiment, they do not have a repulsive \pi phase difference that has been previously inferred. We observe that the inclusion of quantum fluctuations causes soliton dynamics to be predominantly repulsive in one dimensional simulations independent of their initial relative phase. However, indicative three-dimensional simulations do not support this conclusion and in fact show that quantum noise has a negative impact on bright solitary wave lifetimes. Finally, we show that condensate oscillations, after the collapse, may serve to deduce three-body recombination rates, and that the remnant atom number may still exceed the critical number for collapse for as long as three seconds independent of the relative phases of the bright solitary waves.Comment: 14 pages, 5 figure
    corecore