3,379 research outputs found

    Interacting Electrons on a Square Fermi Surface

    Full text link
    Electronic states near a square Fermi surface are mapped onto quantum chains. Using boson-fermion duality on the chains, the bosonic part of the interaction is isolated and diagonalized. These interactions destroy Fermi liquid behavior. Non-boson interactions are also generated by this mapping, and give rise to a new perturbation theory about the boson problem. A case with strong repulsions between parallel faces is studied and solved. There is spin-charge separation and the square Fermi surface remains square under doping. At half-filling, there is a charge gap and insulating behavior together with gapless spin excitations. This mapping appears to be a general tool for understanding the properties of interacting electrons on a square Fermi surface.Comment: 25 pages, Nordita preprint 94/22

    Geometric analysis of optical frequency conversion and its control in quadratic nonlinear media

    Get PDF
    We analyze frequency conversion and its control among three light waves using a geometric approach that enables the dynamics of the waves to be visualized on a closed surface in three dimensions. It extends the analysis based on the undepleted-pump linearization and provides a simple way to understand the fully nonlinear dynamics. The Poincaré sphere has been used in the same way to visualize polarization dynamics. A geometric understanding of control strategies that enhance energy transfer among interacting waves is introduced, and the quasi-phase-matching strategy that uses microstructured quadratic materials is illustrated in this setting for both type I and II second-harmonic generation and for parametric three-wave interactions

    The DMSP/MFR total ozone and radiance data base

    Get PDF
    This report describes the entries in sufficient detail so that the data base might be useful to others. The characteristics of the MFR sensor are briefly discussed and a complete index to the data base tapes is given

    WHEAT BUFFER STOCKS AND TRADE IN AN EFFICIENT GLOBAL ECONOMY

    Get PDF
    This study assesses storage and trade of wheat in an integrated global economy. Domestic and international linkages are analyzed using a dynamic rational expectations model of the world wheat market. The results of this study demonstrate the importance of endogenizing both storage and trade in studying commodity markets. Results suggest an optimal US buffer stock level of 150 million bushel. Results indicate that past government stockholdings have not followed efficient market outcomes. Private markets likely would perform better in the absence of government market distortions. Results indicate that elimination of the Export Enhancement Program by the US and of export restitution payments by the EU is unlikely to have a major impact on wheat exports from the two regions, but will save millions of tax dollars in both regions.Crop Production/Industries, International Relations/Trade,

    The Cotton Seedling Disease Complex and its Control.

    Get PDF
    4 p

    Excitations in one-dimensional S=1/2 quantum antiferromagnets

    Full text link
    The transition from dimerized to uniform phases is studied in terms of spectral weights for spin chains using continuous unitary transformations (CUTs). The spectral weights in the S=1 channel are computed perturbatively around the limit of strong dimerization. We find that the spectral weight is concentrated mainly in the subspaces with a small number of elementary triplets (triplons), even for vanishing dimerization. So, besides spinons, triplons may be used as elementary excitations in spin chains. We conclude that there is no necessity to use fractional excitations in low-dimensional, undoped or doped quantum antiferromagnets.Comment: 4 pages, 1 figure include

    Effect of low-Raman window position on correlated photon-pair generation in a chalcogenide Ge11.5As24Se64.5 nanowire

    Get PDF
    We investigated correlated photon-pair generation via spontaneous four-wave mixing in an integrated chalcogenideGe11.5As24Se64.5photonicnanowire. The coincidence to accidental ratio, a key measurement for the quality of correlated photon-pair sources, was measured to be only 0.4 when the photon pairs were generated at 1.9 THz detuning from the pump frequency due to high spontaneous Raman noise in this regime. However, the existence of a characteristic low-Raman window at around 5.1 THz in this material's Raman spectrum and dispersion engineering of the nanowire allowed us to generate photon pairs with a coincidence to accidental ratio of 4.5, more than 10 times higher than the 1.9 THz case. Through comparing the results with those achieved in chalcogenide As2S3waveguides which also exhibit a low Raman-window but at a larger detuning of 7.4 THz, we find that the position of the characteristic low-Raman window plays an important role on reducing spontaneous Raman noise because the phonon population is higher at smaller detuning. Therefore the ultimate solution for Raman noise reduction in Ge11.5As24Se64.5 is to generate photon pairs outside the Raman gain band at more than 10 THz detuning

    Bosonization of the Low Energy Excitations of Fermi Liquids

    Full text link
    We bosonize the low energy excitations of Fermi Liquids in any number of dimensions in the limit of long wavelengths. The bosons are coherent superposition of electron-hole pairs and are related with the displacement of the Fermi Surface in some arbitrary direction. A coherent-state path integral for the bosonized theory is derived and it is shown to represent histories of the shape of the Fermi Surface. The Landau equation for the sound waves is shown to be exact in the semiclassical approximation for the bosons.Comment: 10 pages, RevteX, P-93-03-027 (UIUC

    Correlations in the Sine-Gordon Model with Finite Soliton Density

    Full text link
    We study the sine-Gordon (SG) model at finite densities of the topological charge and small SG interaction constant, related to the one-dimensional Hubbard model near half-filling. Using the modified WKB approach, we find that the spectrum of the Gaussian fluctuations around the classical solution reproduces the results of the Bethe ansatz studies. The modification of the collective coordinate method allows us to write down the action, free from infra-red divergencies. The behaviour of the density-type correlation functions is non-trivial and we demonstrate the existence of leading and sub-leading asymptotes. A consistent definition of the charge-raising operator is discussed. The superconducting-type correlations are shown to decrease slowly at small soliton densities, while the spectral weight of right (left) moving fermions is spread over neighboring "4k_F" harmonics.Comment: 12 pages, 3 eps figures, REVTEX; a discussion of fermions is adde
    • …
    corecore