33,542 research outputs found
Reactions to Skill Assessment: The Forgotten Factor in Explaining Motivation to Learn
This study examined the effects of trainees’ reactions to skill assessment on their motivation to learn. A model was developed that suggests that two dimensions of trainees’ assessment reactions – distributive justice and utility – influence training motivation and overall training effectiveness. The model was tested using a sample of individuals (N = 113) enrolled in a truck driving training program. Results revealed that trainees’ who perceived higher levels of distributive justice and utility had higher motivation to learn. Training motivation was found to significantly predict several measures of training effectiveness. Trainees’ performance on the pre-training assessment and trait goal orientation exhibited direct and interactive effects on their reactions to the skill assessment. Implications of these findings for future research on reactions to skill assessments are identified along with the practical implications for the design and conduct of training needs assessment
Bounds on negative energy densities in flat spacetime
We generalise results of Ford and Roman which place lower bounds -- known as
quantum inequalities -- on the renormalised energy density of a quantum field
averaged against a choice of sampling function. Ford and Roman derived their
results for a specific non-compactly supported sampling function; here we use a
different argument to obtain quantum inequalities for a class of smooth, even
and non-negative sampling functions which are either compactly supported or
decay rapidly at infinity. Our results hold in -dimensional Minkowski space
() for the free real scalar field of mass . We discuss various
features of our bounds in 2 and 4 dimensions. In particular, for massless field
theory in 2-dimensional Minkowski space, we show that our quantum inequality is
weaker than Flanagan's optimal bound by a factor of 3/2.Comment: REVTeX, 13 pages and 2 figures. Minor typos corrected, one reference
adde
Lightcone fluctuations in flat spacetimes with nontrivial topology
The quantum lightcone fluctuations in flat spacetimes with compactified
spatial dimensions or with boundaries are examined. The discussion is based
upon a model in which the source of the underlying metric fluctuations is taken
to be quantized linear perturbations of the gravitational field. General
expressions are derived, in the transverse trace-free gauge, for the summation
of graviton polarization tensors, and for vacuum graviton two-point functions.
Because of the fluctuating light cone, the flight time of photons between a
source and a detector may be either longer or shorter than the light
propagation time in the background classical spacetime. We calculate the mean
deviations from the classical propagation time of photons due to the changes in
the topology of the flat spacetime. These deviations are in general larger in
the directions in which topology changes occur and are typically of the order
of the Planck time, but they can get larger as the travel distance increases.Comment: 25 pages, 5 figures, some discussions added and a few typos
corrected, final version to appear in Phys. Rev.
Neutrinoless Double Beta Decay with SNO+
SNO+ will search for neutrinoless double beta decay by loading 780 tonnes of
linear alkylbenzene liquid scintillator with O(tonne) of neodymium. Using
natural Nd at 0.1% loading will provide 43.7 kg of 150Nd given its 5.6%
abundance and allow the experiment to reach a sensitivity to the effective
neutrino mass of 100-200 meV at 90% C.L in a 3 year run. The SNO+ detector has
ultra low backgrounds with 7000 tonnes of water shielding and self-shielding of
the scintillator. Distillation and several other purification techniques will
be used with the aim of achieving Borexino levels of backgrounds. The
experiment is fully funded and data taking with light-water will commence in
2012 with scintillator data following in 2013.Comment: 4 pages, 2 figures, prepared for TAUP 201
Metals plated on fluorocarbon polymers
Electroplating lead on fluorocarbon polymer parts is accomplished by etching the parts to be plated with sodium, followed by successive depositions of silver and lead from ultrasonically agitated plating solutions. Metals other than lead may be electroplated on the silvered parts
A quantum weak energy inequality for the Dirac field in two-dimensional flat spacetime
Fewster and Mistry have given an explicit, non-optimal quantum weak energy
inequality that constrains the smeared energy density of Dirac fields in
Minkowski spacetime. Here, their argument is adapted to the case of flat,
two-dimensional spacetime. The non-optimal bound thereby obtained has the same
order of magnitude, in the limit of zero mass, as the optimal bound of Vollick.
In contrast with Vollick's bound, the bound presented here holds for all
(non-negative) values of the field mass.Comment: Version published in Classical and Quantum Gravity. 7 pages, 1 figur
Quantum energy inequalities in two dimensions
Quantum energy inequalities (QEIs) were established by Flanagan for the
massless scalar field on two-dimensional Lorentzian spacetimes globally
conformal to Minkowski space. We extend his result to all two-dimensional
globally hyperbolic Lorentzian spacetimes and use it to show that flat
spacetime QEIs give a good approximation to the curved spacetime results on
sampling timescales short in comparison with natural geometric scales. This is
relevant to the application of QEIs to constrain exotic spacetime metrics.Comment: 4 pages, REVTeX. This is an expanded version of a portion of
gr-qc/0409043. To appear in Phys Rev
Use of mathematical derivatives (time-domain differentiation) on chromatographic data to enhance the detection and quantification of an unknown 'rider' peak
Two samples of an anticancer prodrug, AQ4N, were submitted for HPLC assay and showed an unidentified impurity that eluted as a 'rider' on the tail of the main peak. Mathematical derivatization of the chromatograms offered several advantages over conventional skimmed integration. A combination of the second derivative amplitude and simple linear regression gave a novel method for estimating the true peak area of the impurity peak. All the calculation steps were carried out using a widely available spreadsheet program. (C) 2003 Elsevier B.V. All rights reserved
The Effects of Stress Tensor Fluctuations upon Focusing
We treat the gravitational effects of quantum stress tensor fluctuations. An
operational approach is adopted in which these fluctuations produce
fluctuations in the focusing of a bundle of geodesics. This can be calculated
explicitly using the Raychaudhuri equation as a Langevin equation. The physical
manifestation of these fluctuations are angular blurring and luminosity
fluctuations of the images of distant sources. We give explicit results for the
case of a scalar field on a flat background in a thermal state.Comment: 26 pages, 1 figure, new material added in Sect. III and in Appendices
B and
Dynamic wormholes
A new framework is proposed for general dynamic wormholes, unifying them with
black holes. Both are generically defined locally by outer trapping horizons,
temporal for wormholes and spatial or null for black and white holes. Thus
wormhole horizons are two-way traversible, while black-hole and white-hole
horizons are only one-way traversible. It follows from the Einstein equation
that the null energy condition is violated everywhere on a generic wormhole
horizon. It is suggested that quantum inequalities constraining negative energy
break down at such horizons. Wormhole dynamics can be developed as for
black-hole dynamics, including a reversed second law and a first law involving
a definition of wormhole surface gravity. Since the causal nature of a horizon
can change, being spatial under positive energy and temporal under sufficient
negative energy, black holes and wormholes are interconvertible. In particular,
if a wormhole's negative-energy source fails, it may collapse into a black
hole. Conversely, irradiating a black-hole horizon with negative energy could
convert it into a wormhole horizon. This also suggests a possible final state
of black-hole evaporation: a stationary wormhole. The new framework allows a
fully dynamical description of the operation of a wormhole for practical
transport, including the back-reaction of the transported matter on the
wormhole. As an example of a matter model, a Klein-Gordon field with negative
gravitational coupling is a source for a static wormhole of Morris & Thorne.Comment: 5 revtex pages, 4 eps figures. Minor change which did not reach
publisher
- …