402 research outputs found

    Characterization and calibration of the James Webb space telescope mirror actuators fine stage motion

    Get PDF
    The James Webb Space Telescope’s (Webb’s) deployable primary and secondary mirrors are actively controlled to achieve and maintain precise optical alignment on-orbit. Each of the 18 primary mirror segment assemblies (PMSAs) and the secondary mirror assembly (SMA) are controlled in six degrees of freedom by using six linear actuators in a hexapod arrangement. In addition, each PMSA contains a seventh actuator that adjusts radius of curvature (RoC). The actuators are of a novel stepper motor-based cryogenic two-stage design that is capable of sub-10 nm motion accuracy over a 20 mm range. The nm-level motion of the 132 actuators were carefully tested and characterized before integration into the mirror assemblies. Using these test results as an initial condition, knowledge of each actuator’s length (and therefore mirror position) has relied on software bookkeeping and configuration control to keep an accurate motor step count from which actuator position can be calculated. These operations have been carefully performed through years of Webb test operations using both ground support actuator control software as well as the flight Mirror Control Software (MCS). While the actuator’s coarse stage length is cross-checked using a linear variable differential transformer (LVDT), no on-board cross-check exists for the nm-level length changes of the actuators’ fine stage. To ensure that the software bookkeeping of motor step count is still accurate after years of testing and to test that the actuator position knowledge was properly handed off from the ground software to the flight MCS, a series of optical tests were devised and performed through the Center of Curvature (CoC) ambient optical test campaigns at the Goddard Space Flight Center (GSFC) and during the thermal-vacuum tests of the entire optical payload that were conducted in Chamber A at Johnson Space Center (JSC). In each test, the actuator Fine Step Count (FSC) value is compared to an external measurement provided by an optical metrology tool with the goal of either confirming the MCS database value, or providing a recommendation for an updated calibration if the measured FSC differs significantly from the MCS-based expectation. During ambient testing of the PMSA hexapods, the nm-level actuator length changes were measured with a custom laser deflectometer by measuring tilts of the PMSA. The PMSA RoC fine stage characterization was performed at JSC using multi-wave interferometric measurements with the CoC Optical Assembly (COCOA). Finally, the SMA hexapod fine stage characterization test was performed at JSC using the NIRCam instrument in the “pass-and-a-half” test configuration using a test source from the Aft-Optics System Source Plate Assembly (ASPA). In this paper, each of these three tests, subsequent data analyses, and uncertainty estimations will be presented. Additionally, a summary of the ensemble state of Webb’s actuator fine stages is provided, along with a comparison to a Wavefront Sensing and Control (WFSC)-based requirement for FSC errors as they relate to the optical alignment convergence of the telescope on-orbit

    Learning to rebel

    Get PDF
    Background: As a response to collective failure to move adequately towards sustainability, youth movements have grown. This article explores the experiences of one young climate activist, Elsie Luna. The article is the product of conversations between the co-authors, augmented by written material by Elsie Luna. The article seeks to avoid adultism, that is, the power that adults have over children; hence it is written principally using Elsie’s own words, with minimal translation or interpretation. The article reflects on three key recent events in Elsie Luna’s activism: her approach to the London headquarters of several oil companies; her ‘dying’ symbolically at the BBC in Berlin; and her recent involvement in the large Extinction Rebellion actions in London. Findings: The article suggests that these events offer insights on learning. Specifically, she is formulating views on sustainability, on system change and associated strategies, and developing a moral position on these matters. She has learned socially, from family and other immediate influences, and from activism. Thus, further, she has learned from experience, but has done so in her own self-managed way

    JWST mirror and actuator performance at cryo-vacuum

    Get PDF
    The James Webb Space Telescope (JWST) telescope’s Secondary Mirror Assembly (SMA) and eighteen Primary Mirror Segment Assemblies (PMSAs) are each actively controlled in rigid body position via six hexapod actuators. Each of the PMSAs additionally has a radius of curvature actuator. The mirrors are stowed to the mirror support structure to survive the launch environment and then must be deployed 12.5 mm to reach the nominally deployed position before the Wavefront Sensing & Control (WFSC) alignment and phasing process begins. JWST requires testing of the full optical system in a Cryogenic Vacuum (CV) environment before launch. The cryo vacuum test campaign was executed in Chamber A at the Johnson Space Center (JSC) in Houston Texas. The test campaign consisted of an ambient vacuum test, a cooldown test, a cryo stable test at 65 Kelvin, a warmup test, and finally a second ambient vacuum test. Part of that test campaign was the functional and performance testing of the hexapod actuators on the flight mirrors. This paper will describe the testing that was performed on all 132 hexapod and radius of curvature actuators. The test campaign first tests actuators individually then tested how the actuators perform in the hexapod system. Telemetry from flight sensors on the actuators and measurements from external metrology devices such as interferometers, photogrammetry systems and image analysis was used to demonstrate the performance of the JWST actuators. The mirror move commanding process was exercised extensively during the JSC CV test and many examples of accurately commanded moves occurred. The PMSA and SMA actuators performed extremely well during the JSC CV test, and we have demonstrated that the actuators are fully functional both at ambient and cryo temperatures and that the mirrors will go to their commanded positions with the accuracy needed to phase and align the telescope

    Understanding signaling cascades in melanoma

    Get PDF
    Understanding regulatory pathways involved in melanoma development and progression has advanced significantly in recent years. It is now appreciated that melanoma is the result of complex changes in multiple signaling pathways that affect growth control, metabolism, motility and the ability to escape cell death programs. Here we review the major signaling pathways currently known to be deregulated in melanoma with an implication to its development and progression. Among these pathways are Ras, B-Raf, MEK, PTEN, phosphatidylinositol-3 kinase (PI3Ks) and Akt which are constitutively activated in a significant number of melanoma tumors, in most cases due to genomic change. Other pathways discussed in this review include the [Janus kinase/signal transducer and activator of transcription (JAK/STAT), transforming growth factor-beta pathways which are also activated in melanoma, although the underlying mechanism is not yet clear. As a paradigm for remodeled signaling pathways, melanoma also offers a unique opportunity for targeted drug development.Fil: Lopez Bergami, Pablo Roberto. Sanford-burnham Medical Research Institute; Estados Unidos. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BiologĂ­a y Medicina Experimental. FundaciĂłn de Instituto de BiologĂ­a y Medicina Experimental. Instituto de BiologĂ­a y Medicina Experimental; ArgentinaFil: Fitchmann, B. Sanford-burnham Medical Research Institute; Estados UnidosFil: Ronai, ZeÂŽev. Sanford-burnham Medical Research Institute; Estados Unido

    Microplastics in the Arctic: a transect through the Barents Sea

    Get PDF
    Globally, the abundance of microplastics in our oceans is increasing, including within the remote locations of the polar regions. The Barents Sea, which adjoins the Arctic Ocean, is an area of high primary productivity that, owing to the convergence of regional currents, has been mooted as a potential sixth ocean gyre that may coalesce high concentrations of plastic debris. This study aimed to explore data collected from large volume samples of sub-surface water collected from transects through the Barents Sea to quantify and characterise microplastics in this region, with a focus on potential impacts to zooplankton. Overall, the mean microplastic abundance in the Barents Sea was 0.011 microplastics m-3 (range: 0.007 – 0.015 m-3). Microplastics were found in higher abundances nearer land mass at the southern end of the transect and northwards towards the ice edge, recording 0.015 microplastics m-3 during both transect legs. Microplastics were predominantly fibrous (92.1%) and typically blue (79%) or red (17%) in colour. A range of polymers were identified including polyester (3.8%), copolymer blends (2.7%), elastomers (7.1%) and acrylics (10.6%), however semi-synthetic polymers dominated, comprising 74.4% of particles found. Higher microplastic concentrations in the northernmost transect may stem from melting sea-ice, while the higher concentrations in the southernmost transect likely derive from the long-range transport of microplastics via currents from Europe

    Characterization and calibration of the James Webb space telescope mirror actuators fine stage motion

    Get PDF
    The James Webb Space Telescope’s (Webb’s) deployable primary and secondary mirrors are actively controlled to achieve and maintain precise optical alignment on-orbit. Each of the 18 primary mirror segment assemblies (PMSAs) and the secondary mirror assembly (SMA) are controlled in six degrees of freedom by using six linear actuators in a hexapod arrangement. In addition, each PMSA contains a seventh actuator that adjusts radius of curvature (RoC). The actuators are of a novel stepper motor-based cryogenic two-stage design that is capable of sub-10 nm motion accuracy over a 20 mm range. The nm-level motion of the 132 actuators were carefully tested and characterized before integration into the mirror assemblies. Using these test results as an initial condition, knowledge of each actuator’s length (and therefore mirror position) has relied on software bookkeeping and configuration control to keep an accurate motor step count from which actuator position can be calculated. These operations have been carefully performed through years of Webb test operations using both ground support actuator control software as well as the flight Mirror Control Software (MCS). While the actuator’s coarse stage length is cross-checked using a linear variable differential transformer (LVDT), no on-board cross-check exists for the nm-level length changes of the actuators’ fine stage. To ensure that the software bookkeeping of motor step count is still accurate after years of testing and to test that the actuator position knowledge was properly handed off from the ground software to the flight MCS, a series of optical tests were devised and performed through the Center of Curvature (CoC) ambient optical test campaigns at the Goddard Space Flight Center (GSFC) and during the thermal-vacuum tests of the entire optical payload that were conducted in Chamber A at Johnson Space Center (JSC). In each test, the actuator Fine Step Count (FSC) value is compared to an external measurement provided by an optical metrology tool with the goal of either confirming the MCS database value, or providing a recommendation for an updated calibration if the measured FSC differs significantly from the MCS-based expectation. During ambient testing of the PMSA hexapods, the nm-level actuator length changes were measured with a custom laser deflectometer by measuring tilts of the PMSA. The PMSA RoC fine stage characterization was performed at JSC using multi-wave interferometric measurements with the CoC Optical Assembly (COCOA). Finally, the SMA hexapod fine stage characterization test was performed at JSC using the NIRCam instrument in the “pass-and-a-half” test configuration using a test source from the Aft-Optics System Source Plate Assembly (ASPA). In this paper, each of these three tests, subsequent data analyses, and uncertainty estimations will be presented. Additionally, a summary of the ensemble state of Webb’s actuator fine stages is provided, along with a comparison to a Wavefront Sensing and Control (WFSC)-based requirement for FSC errors as they relate to the optical alignment convergence of the telescope on-orbit

    Color adjectives, standards, and thresholds: an experimental investigation

    Get PDF
    Are color adjectives (“red”, “green”, etc.) relative adjectives or absolute adjectives? Existing theories of the meaning of color adjectives attempt to answer that question using informal (“armchair”) judgments. The informal judgments of theorists conflict: it has been proposed that color adjectives are absolute with standards anchored at the minimum degree on the scale, that they are absolute but have near- midpoint standards, and that they are relative. In this paper we report two experiments, one based on entailment patterns and one based on presupposition accommodation, that investigate the meaning of scalar adjectives. We find evidence confirming the existence of subgroups of the population who operate with different standards for color adjectives. The evidence of interpersonal variation in where standards are located on the relevant scale and how those standards can be adjusted indicates that the existing theories of the meaning of color adjectives are at best only partially correct. We also find evidence that paradigmatic relative adjectives (“tall”, “wide”) behave in ways that are not predicted by the standard theory of scalar adjectives. We discuss several different possible explanations for this unexpected behavior. We conclude by discussing the relevance of our findings for philosophical debates about the nature and extent of semantically encoded context sensitivity in which color adjectives have played a key role

    Enhanced Lipid Diffusion and Mixing in Accelerated Molecular Dynamics

    Get PDF
    Accelerated molecular dynamics (aMD) is an enhanced sampling technique that expedites conformational space sampling by reducing the barriers separating various low-energy states of a system. Here, we present the first application of the aMD method on lipid membranes. Altogether, ∌1.5 ÎŒs simulations were performed on three systems: a pure POPC bilayer, a pure DMPC bilayer, and a mixed POPC:DMPC bilayer. Overall, the aMD simulations are found to produce significant speedup in trans–gauche isomerization and lipid lateral diffusion versus those in conventional MD (cMD) simulations. Further comparison of a 70-ns aMD run and a 300-ns cMD run of the mixed POPC:DMPC bilayer shows that the two simulations yield similar lipid mixing behaviors, with aMD generating a 2–3-fold speedup compared to cMD. Our results demonstrate that the aMD method is an efficient approach for the study of bilayer structural and dynamic properties. On the basis of simulations of the three bilayer systems, we also discuss the impact of aMD parameters on various lipid properties, which can be used as a guideline for future aMD simulations of membrane systems

    Using Routinely Collected Administrative Data in Public Health Research: Geocoding Alcohol Outlet Data

    Get PDF
    We describe our process of geocoding alcohol outlets to create a national longitudinal exposure dataset for Wales, United Kingdom from 2006 to 2011. We investigated variation in the availability of data items and the quality of alcohol outlet addresses held within unitary authorities. We used a standard geocoding method augmented with a manual matching procedure to achieve a fully spatially referenced dataset. We found higher quality addresses are held for outlets based in urban areas, resulting in the automatic geocoding of 68 % of urban outlets, compared to 48 % in rural areas. Missing postcodes and a lack of address structure contributed to a lower geocoding proportion. An urban rural bias was removed with the development of a manual matching procedure. Only one-half of the unitary authorities provided data on on/off sales and opening times, which are important availability factors. The resulting outlet dataset is suitable for contributing to the evidence-base of alcohol availability and alcohol-related harm. Local government should be encouraged to use standardised data fields, including addresses, to enable accurate geocoding of alcohol outlets and facilitate research that aims to prevent alcohol-related harm. Standardising data collection would enable efficient secondary data reuse using record linkage techniques, allowing the retrospective creation and evaluation of population-based natural experiments to provide evidence for policy and practice
    • 

    corecore