1,738 research outputs found

    Entrepreneurial capital, social values and Islamic traditions: exploring the growth of women-owned enterprises in Pakistan

    Get PDF
    Main ArticleThis study seeks to explore the variables contributing to the growth of women-owned enterprises in the Islamic Republic of Pakistan. Based on a previously established multivariate model, it uses two econometric approaches: first classifying variables into predetermined blocks; and second, using the general to specific approach. Statistical analyses and in-depth interviews confirm that women entrepreneurs’ personal resources and social capital have a significant role in their business growth. Further, it reveals that the moral support of immediate family, independent mobility and being allowed to meet with men play a decisive role in the sales and employment growth of women-owned enterprises in an Islamic country such as Pakistan

    Class of dilute granular Couette flows with uniform heat flux

    Full text link
    In a recent paper [F. Vega Reyes et al., Phys. Rev. Lett. 104, 028001 (2010)] we presented a preliminary description of a special class of steady Couette flows in dilute granular gases. In all flows of this class the viscous heating is exactly balanced by inelastic cooling. This yields a uniform heat flux and a linear relationship between the local temperature and flow velocity. The class (referred to as the LTu class) includes the Fourier flow of ordinary gases and the simple shear flow of granular gases as special cases. In the present paper we provide further support for this class of Couette flows by following four different routes, two of them being theoretical (Grad's moment method of the Boltzmann equation and exact solution of a kinetic model) and the other two being computational (molecular dynamics and Monte Carlo simulations of the Boltzmann equation). Comparison between theory and simulations shows a very good agreement for the non-Newtonian rheological properties, even for quite strong inelasticity, and a good agreement for the heat flux coefficients in the case of Grad's method, the agreement being only qualitative in the case of the kinetic model.Comment: 15 pages, 10 figures; v2: change of title plus some other minor change

    Fluid/solid transition in a hard-core system

    Get PDF
    We prove that a system of particles in the plane, interacting only with a certain hard-core constraint, undergoes a fluid/solid phase transition

    NCLB technology and a rural school: A case study

    Get PDF
    The requirements of the No Child Left Behind Act of 2001 (NCLB) have presented special challenges and opportunities for rural schools (Reeves, 2003). Researchers have suggested that one way rural schools may be able to overcome these challenges is through an increase in the level of technology integration in their school (Collins & Dewees, 2001). This case study reports on one school’s attempt to use grant resources funded through NCLB to integrate specific instructional technologies to facilitate increased student achievement. Through interviews and observations, the roles, attitudes, and difficulties of teachers and administrators in implementing a technology initiative in a rural middle school were observed, examined and discussed. Emerging themes included issues related to teacher ownership of the technology, teacher feelings of power and participation, differing goals of teachers and administrators, technical difficulties, school wide support, and changes in school culture

    The dynamics of thin vibrated granular layers

    Full text link
    We describe a series of experiments and computer simulations on vibrated granular media in a geometry chosen to eliminate gravitationally induced settling. The system consists of a collection of identical spherical particles on a horizontal plate vibrating vertically, with or without a confining lid. Previously reported results are reviewed, including the observation of homogeneous, disordered liquid-like states, an instability to a `collapse' of motionless spheres on a perfect hexagonal lattice, and a fluctuating, hexagonally ordered state. In the presence of a confining lid we see a variety of solid phases at high densities and relatively high vibration amplitudes, several of which are reported for the first time in this article. The phase behavior of the system is closely related to that observed in confined hard-sphere colloidal suspensions in equilibrium, but with modifications due to the effects of the forcing and dissipation. We also review measurements of velocity distributions, which range from Maxwellian to strongly non-Maxwellian depending on the experimental parameter values. We describe measurements of spatial velocity correlations that show a clear dependence on the mechanism of energy injection. We also report new measurements of the velocity autocorrelation function in the granular layer and show that increased inelasticity leads to enhanced particle self-diffusion.Comment: 11 pages, 7 figure

    NCLB Technology and a Rural School: A Case Study

    Get PDF
    The requirements of the No Child Left Behind Act of 2001 (NCLB) have presented special challenges and opportunities for rural schools (Reeves, 2003). Researchers have suggested that one way rural schools may be able to overcome these challenges is through an increase in the level of technology integration in their school (Collins & Dewees, 2001). This case study reports on one school’s attempt to use grant resources funded through NCLB to integrate specific instructional technologies to facilitate increased student achievement. Through interviews and observations, the roles, attitudes, and difficulties of teachers and administrators in implementing a technology initiative in a rural middle school were observed, examined and discussed. Emerging themes included issues related to teacher ownership of the technology, teacher feelings of power and participation, differing goals of teachers and administrators, technical difficulties, school wide support, and changes in school culture

    The Boltzmann Entropy for Dense Fluids Not in Local Equilibrium

    Full text link
    We investigate, via computer simulations, the time evolution of the (Boltzmann) entropy of a dense fluid not in local equilibrium. The macrovariables MM describing the system are the (empirical) particle density f=\{f(\un{x},\un{v})\} and the total energy EE. We find that S(ft,E)S(f_t,E) is monotone increasing in time even when its kinetic part is decreasing. We argue that for isolated Hamiltonian systems monotonicity of S(Mt)=S(MXt)S(M_t) = S(M_{X_t}) should hold generally for ``typical'' (the overwhelming majority of) initial microstates (phase-points) X0X_0 belonging to the initial macrostate M0M_0, satisfying MX0=M0M_{X_0} = M_0. This is a direct consequence of Liouville's theorem when MtM_t evolves autonomously.Comment: 8 pages, 5 figures. Submitted to PR

    The value of paleoecology as an aid to monitoring ecosystems and landscapes, chiefly with reference to North America

    Get PDF
    Paleoecological indicators are examined as to their accuracy in reconstructing past biotic communities and environmental conditions, their utility in answering important questions about such communities and conditions, and the temporal and spatial scales over which they are effective. Next, environmental problems susceptible of paleoecological analysis are considered, as are the ecosystem and landscape properties that can be inferred from such an analysis. The usefulness of paleoecology in anticipating ecological surprises is then discussed. Finally, a set of conclusions and recommendations is presented

    Criticality in strongly correlated fluids

    Full text link
    In this brief review I will discuss criticality in strongly correlated fluids. Unlike simple fluids, molecules of which interact through short ranged isotropic potential, particles of strongly correlated fluids usually interact through long ranged forces of Coulomb or dipolar form. While for simple fluids mechanism of phase separation into liquid and gas was elucidated by van der Waals more than a century ago, the universality class of strongly correlated fluids, or in some cases even existence of liquid-gas phase separation remains uncertain.Comment: Proceedings of Scaling Concepts and Complex Systems, Merida, Mexic

    Unification of dynamic density functional theory for colloidal fluids to include inertia and hydrodynamic interactions: derivation and numerical experiments.

    Get PDF
    Starting from the Kramers equation for the phase-space dynamics of the N-body probability distribution, we derive a dynamical density functional theory (DDFT) for colloidal fluids including the effects of inertia and hydrodynamic interactions (HI). We compare the resulting theory to extensive Langevin dynamics simulations for both hard rod systems and three-dimensional hard sphere systems with radially symmetric external potentials. As well as demonstrating the accuracy of the new DDFT, by comparing with previous DDFTs which neglect inertia, HI, or both, we also scrutinize the significance of including these effects. Close to local equilibrium we derive a continuum equation from the microscopic dynamics which is a generalized Navier–Stokes-like equation with additional non-local terms governing the effects of HI. For the overdamped limit we recover analogues of existing configuration-space DDFTs but with a novel diffusion tensor
    • …
    corecore