In a recent paper [F. Vega Reyes et al., Phys. Rev. Lett. 104, 028001 (2010)]
we presented a preliminary description of a special class of steady Couette
flows in dilute granular gases. In all flows of this class the viscous heating
is exactly balanced by inelastic cooling. This yields a uniform heat flux and a
linear relationship between the local temperature and flow velocity. The class
(referred to as the LTu class) includes the Fourier flow of ordinary gases and
the simple shear flow of granular gases as special cases. In the present paper
we provide further support for this class of Couette flows by following four
different routes, two of them being theoretical (Grad's moment method of the
Boltzmann equation and exact solution of a kinetic model) and the other two
being computational (molecular dynamics and Monte Carlo simulations of the
Boltzmann equation). Comparison between theory and simulations shows a very
good agreement for the non-Newtonian rheological properties, even for quite
strong inelasticity, and a good agreement for the heat flux coefficients in the
case of Grad's method, the agreement being only qualitative in the case of the
kinetic model.Comment: 15 pages, 10 figures; v2: change of title plus some other minor
change