9,108 research outputs found

    Quantum Loop Subalgebra and Eigenvectors of the Superintegrable Chiral Potts Transfer Matrices

    Full text link
    It has been shown in earlier works that for Q=0 and L a multiple of N, the ground state sector eigenspace of the superintegrable tau_2(t_q) model is highly degenerate and is generated by a quantum loop algebra L(sl_2). Furthermore, this loop algebra can be decomposed into r=(N-1)L/N simple sl_2 algebras. For Q not equal 0, we shall show here that the corresponding eigenspace of tau_2(t_q) is still highly degenerate, but splits into two spaces, each containing 2^{r-1} independent eigenvectors. The generators for the sl_2 subalgebras, and also for the quantum loop subalgebra, are given generalizing those in the Q=0 case. However, the Serre relations for the generators of the loop subalgebra are only proven for some states, tested on small systems and conjectured otherwise. Assuming their validity we construct the eigenvectors of the Q not equal 0 ground state sectors for the transfer matrix of the superintegrable chiral Potts model.Comment: LaTeX 2E document, using iopart.cls with iopams packages. 28 pages, uses eufb10 and eurm10 fonts. Typeset twice! Version 2: Details added, improvements and minor corrections made, erratum to paper 2 included. Version 3: Small paragraph added in introductio

    Duality and Symmetry in Chiral Potts Model

    Full text link
    We discover an Ising-type duality in the general NN-state chiral Potts model, which is the Kramers-Wannier duality of planar Ising model when N=2. This duality relates the spectrum and eigenvectors of one chiral Potts model at a low temperature (of small k′k') to those of another chiral Potts model at a high temperature (of k′−1k'^{-1}). The τ(2)\tau^{(2)}-model and chiral Potts model on the dual lattice are established alongside the dual chiral Potts models. With the aid of this duality relation, we exact a precise relationship between the Onsager-algebra symmetry of a homogeneous superintegrable chiral Potts model and the sl2sl_2-loop-algebra symmetry of its associated spin-N−12\frac{N-1}{2} XXZ chain through the identification of their eigenstates.Comment: Latex 34 pages, 2 figures; Typos and misprints in Journal version are corrected with minor changes in expression of some formula

    The Effect of Microplastic Fibers on the Freshwater Amphipod, Hyalella Azteca

    Get PDF
    Microplastics are a growing and persistent contaminant in aquatic ecosystems. There is a wide variety of shapes that MPs can take, with fibers being the most prominently found in marine systems. Few studies have investigated the toxicological implications of MP exposure to freshwater organisms, and none so far has quantified the effect that fibers, as compared to spherical particles, may have on aquatic organisms. A 42-day chronic exposure to polypropylene MP fibers (0 – 22.5 MPs/mL) was conducted in order to investigate potential effects on mortality, growth, reproduction, and egestion times. Significant mortality was only observed at the highest concentration (22.5 MPs/mL). Growth and reproduction is also significantly less than the control at all exposures to MP fibers, with no mating pairs forming at all in concentrations greater than 5.63 MPs/mL. Interestingly, gut clearance times after exposure to MP fibers is also greater at concentrations greater than 5.63 MPs/mL. Delays in reproduction and growth may result from deficiencies in nutrient uptake. This study provides further insight on how the shape of MPs may hold significant implications on their toxicity to aquatic organisms

    The Onsager Algebra Symmetry of Ï„(j)\tau^{(j)}-matrices in the Superintegrable Chiral Potts Model

    Full text link
    We demonstrate that the Ï„(j)\tau^{(j)}-matrices in the superintegrable chiral Potts model possess the Onsager algebra symmetry for their degenerate eigenvalues. The Fabricius-McCoy comparison of functional relations of the eight-vertex model for roots of unity and the superintegrable chiral Potts model has been carefully analyzed by identifying equivalent terms in the corresponding equations, by which we extract the conjectured relation of QQ-operators and all fusion matrices in the eight-vertex model corresponding to the TT^T\hat{T}-relation in the chiral Potts model.Comment: Latex 21 pages; Typos added, References update

    Bethe Equation of Ï„(2)\tau^{(2)}-model and Eigenvalues of Finite-size Transfer Matrix of Chiral Potts Model with Alternating Rapidities

    Full text link
    We establish the Bethe equation of the Ï„(2)\tau^{(2)}-model in the NN-state chiral Potts model (including the degenerate selfdual cases) with alternating vertical rapidities. The eigenvalues of a finite-size transfer matrix of the chiral Potts model are computed by use of functional relations. The significance of the "alternating superintegrable" case of the chiral Potts model is discussed, and the degeneracy of Ï„(2)\tau^{(2)}-model found as in the homogeneous superintegrable chiral Potts model.Comment: Latex 25 pages; Typos corrected, Minor changes for clearer presentation, References added-Journal versio

    New Results for the Correlation Functions of the Ising Model and the Transverse Ising Chain

    Full text link
    In this paper we show how an infinite system of coupled Toda-type nonlinear differential equations derived by one of us can be used efficiently to calculate the time-dependent pair-correlations in the Ising chain in a transverse field. The results are seen to match extremely well long large-time asymptotic expansions newly derived here. For our initial conditions we use new long asymptotic expansions for the equal-time pair correlation functions of the transverse Ising chain, extending an old result of T.T. Wu for the 2d Ising model. Using this one can also study the equal-time wavevector-dependent correlation function of the quantum chain, a.k.a. the q-dependent diagonal susceptibility in the 2d Ising model, in great detail with very little computational effort.Comment: LaTeX 2e, 31 pages, 8 figures (16 eps files). vs2: Two references added and minor changes of style. vs3: Corrections made and reference adde

    Eigenvectors in the Superintegrable Model I: sl_2 Generators

    Full text link
    In order to calculate correlation functions of the chiral Potts model, one only needs to study the eigenvectors of the superintegrable model. Here we start this study by looking for eigenvectors of the transfer matrix of the periodic tau_2(t)model which commutes with the chiral Potts transfer matrix. We show that the degeneracy of the eigenspace of tau_2(t) in the Q=0 sector is 2^r, with r=(N-1)L/N when the size of the transfer matrix L is a multiple of N. We introduce chiral Potts model operators, different from the more commonly used generators of quantum group U-tilde_q(sl-hat(2)). From these we can form the generators of a loop algebra L(sl(2)). For this algebra, we then use the roots of the Drinfeld polynomial to give new explicit expressions for the generators representing the loop algebra as the direct sum of r copies of the simple algebra sl(2).Comment: LaTeX 2E document, 11 pages, 1 eps figure, using iopart.cls with graphicx and iopams packages. v2: Appended text to title, added acknowledgments and made several minor corrections v3: Added reference, eliminated ambiguity, corrected a few misprint

    On Ï„(2)\tau^{(2)}-model in Chiral Potts Model and Cyclic Representation of Quantum Group Uq(sl2)U_q(sl_2)

    Full text link
    We identify the precise relationship between the five-parameter Ï„(2)\tau^{(2)}-family in the NN-state chiral Potts model and XXZ chains with Uq(sl2)U_q (sl_2)-cyclic representation. By studying the Yang-Baxter relation of the six-vertex model, we discover an one-parameter family of LL-operators in terms of the quantum group Uq(sl2)U_q (sl_2). When NN is odd, the NN-state Ï„(2)\tau^{(2)}-model can be regarded as the XXZ chain of Uq(sl2)U_{\sf q} (sl_2) cyclic representations with qN=1{\sf q}^N=1. The symmetry algebra of the Ï„(2)\tau^{(2)}-model is described by the quantum affine algebra Uq(sl^2)U_{\sf q} (\hat{sl}_2) via the canonical representation. In general for an arbitrary NN, we show that the XXZ chain with a Uq(sl2)U_q (sl_2)-cyclic representation for q2N=1q^{2N}=1 is equivalent to two copies of the same NN-state Ï„(2)\tau^{(2)}-model.Comment: Latex 11 pages; Typos corrected, Minor changes for clearer presentation, References added and updated-Journal versio

    SHOP2: An HTN Planning System

    Full text link
    The SHOP2 planning system received one of the awards for distinguished performance in the 2002 International Planning Competition. This paper describes the features of SHOP2 which enabled it to excel in the competition, especially those aspects of SHOP2 that deal with temporal and metric planning domains
    • …
    corecore