6,725 research outputs found

    Did GW170817 harbor a pulsar?

    Full text link
    If the progenitor of GW170817 harbored a pulsar, then a Poynting flux dominated bow-shock cavity would have been expected to form around the traveling binary. The characteristic size of this evacuated region depends strongly on the spin-down evolution of the pulsar companion, which in turn depends on the merging timescale of the system. If this evacuated region is able to grow to a sufficiently large scale, then the deceleration of the jet, and thus the onset of the afterglow, would be noticeably delayed. The first detection of afterglow emission, which was uncovered 9.2 days after the γ\gamma-ray burst trigger, can thus be used to constrain the size of a pre-existing pulsar-wind cavity. We use this information, together with a model of the jet to place limits on the presence of a pulsar in GW170817 and discuss the derived constraints in the context of the observed double neutron star binary population. We find that the majority of Galactic systems that are close enough to merge within a Hubble time would have carved a discernibly large pulsar-wind cavity, inconsistent with the onset timescale of the X-ray afterglow of GW170817. Conversely, the recently detected system J1913+1102, which host a low-luminosity pulsar, provides a congruous Milky Way analog of GW170817's progenitor model. This study highlights the potential of the proposed observational test for gaining insight into the origin of double neutron star binaries, in particular if the properties of Galactic systems are representative of the overall merging population.Comment: Accepted for publication in ApJL, 6 pages, 5 figure

    Events in the life of a cocoon surrounding a light, collapsar jet

    Full text link
    According to the collapsar model, gamma-ray bursts are thought to be produced in shocks that occur after the relativistic jet has broken free from the stellar envelope. If the mass density of the collimated outflow is less than that of the stellar envelope, the jet will then be surrounded by a cocoon of relativistic plasma. This material would itself be able to escape along the direction of least resistance, which is likely to be the rotation axis of the stellar progenitor, and accelerate in approximately the same way as an impulsive fireball. We discuss how the properties of the stellar envelope have a decisive effect on the appearance of a cocoon propagating through it. The relativistic material that accumulated in the cocoon would have enough kinetic energy to substantially alter the structure of the relativistic outflow, if not in fact provide much of the observed explosive power. Shock waves within this plasma can produce gamma-ray and X-ray transients, in addition to the standard afterglow emission that would arise from the deceleration shock of the cocoon fireball.Comment: 16 pages, 5 figures, slightly revised version, accepted for publication in MNRA

    Quiescent times in gamma-ray bursts: II. Dormant periods in the central engine?

    Full text link
    Within the framework of the internal-external shocks model for gamma-ray bursts, we study the various mechanisms that can give rise to quiescent times in the observed gamma-ray light-curves. In particular, we look for the signatures that can provide us with evidence as to whether or not the central engine goes dormant for a period of time comparable to the duration of the gaps. We show that the properties of the prompt gamma-ray and X-ray emission can in principle determine whether the quiescent episodes are due to a modulated relativistic wind or a switching off of the central engine. We suggest that detailed observations of the prompt afterglow emission from the reverse shock will strongly constrain the possible mechanisms for the production of quiescent times in gamma-ray bursts.Comment: 12 pages, 8 figures, with final revisions, MNRAS in pres

    The Pulse Scale Conjecture and the Case of BATSE Trigger 2193

    Get PDF
    The pulses that compose gamma-ray bursts (GRBs) are hypothesized to have the same shape at all energies, differing only by scale factors in time and amplitude. This "Pulse Scale Conjecture" is confirmed here between energy channels of the dominant pulse in GRB 930214c (BATSE trigger 2193), the single most fluent single-pulsed GRB that occurred before May 1998. Furthermore, pulses are hypothesized to start at the same time independent of energy. This "Pulse Start Conjecture" is also confirmed in GRB 930214c. Analysis of GRB 930214c also shows that, in general, higher energy channels show shorter temporal scale factors. Over the energy range 100 KeV - 1 MeV, it is found that the temporal scale factors between a pulse measured at different energies are related to that energy by a power law, possibly indicating a simple relativistic mechanism is at work. To test robustness, the Pulse Start and Pulse Scale Conjectures were also tested on the four next most fluent single-pulse GRBs. Three of the four clearly passed, with a second smaller pulse possibly confounding the discrepant test. Models where the pulse rise and decay are created by different phenomena do not typically predict pulses that satisfy both the Pulse Start Conjecture and the Pulse Scale Conjecture, unless both processes are seen to undergo common time dilation.Comment: 19 pages, 9 figures, analysis revised and extended, accepted to Ap

    Tidal Disruption Event Host Galaxies in the Context of the Local Galaxy Population

    Full text link
    We study the properties of tidal disruption event (TDE) host galaxies in the context of a catalog of ~500,000 galaxies from the Sloan Digital Sky Survey. We explore whether selection effects can account for the overrepresentation of TDEs in E+A/post-starburst galaxies by creating matched galaxy samples. Accounting for possible selection effects due to black hole (BH) mass, redshift completeness, strong AGN presence, bulge colors, and surface brightness can reduce the apparent overrepresentation of TDEs in E+A host galaxies by a factor of ~4 (from ~×\times100-190 to ~×\times25-48), but cannot fully explain the preference. We find that TDE host galaxies have atypical photometric properties compared to similar, "typical" galaxies. In particular, TDE host galaxies tend to live in or near the "green valley" between star-forming and passive galaxies, and have bluer bulge colors (Δ(gr)0.3\Delta (g-r) \approx 0.3 mag), lower half-light surface brightnesses (by ~1 mag/arcsec2^2), higher Sersic indices (Δng3\Delta n_{\rm g} \approx 3), and higher bulge-to-total-light ratios (ΔB/T0.5\Delta B/T \approx 0.5) than galaxies with matched BH masses. We find that TDE host galaxies appear more centrally concentrated and that all have high galaxy Sersic indices and B/TB/T fractions---on average in the top 10% of galaxies of the same BH mass---suggesting a higher nuclear stellar density. We identify a region in Sersic index and BH mass parameter space that contains ~2% of our reference catalog galaxies but  ⁣60%\ge\!60\% of TDE host galaxies. The unique photometric properties of TDE host galaxies may be useful for selecting candidate TDEs for spectroscopic follow-up observations in large transient surveys.Comment: 26 pages, 11 figures, 5 tables. Published in Ap

    r-process enrichment of ultra-faint dwarf galaxies by fast merging double neutron stars

    Full text link
    The recent aLIGO/aVirgo discovery of gravitational waves from the neutron star merger (NSM) GW170817 and the follow up kilonova observations have shown that NSMs produce copious amount of r-process material. However, it is difficult to reconcile the large natal kicks and long average merging times of Double Neutron Stars (DNSs), with the levels of r-process enrichment seen in ultra faint dwarf (UFD) galaxies such as Reticulum II and Tucana III. Assuming that such dwarf systems have lost a significant fraction of their stellar mass through tidal stripping, we conclude that contrary to most current models, it is the DNSs with rather large natal kicks but very short merging timescales that can enrich UFD-type galaxies. These binaries are either on highly eccentric orbits, or form with very short separations due to an additional mass-transfer between the first-born neutron star and a naked helium star, progenitor of the second-born neutron star. These DNSs are born with a frequency that agrees with the statistics of the r-process UFDs, and merge well within the virial radius of their host halos, therefore contributing significantly to their r-process enrichment.Comment: Accepted for publication in Ap

    GRB990123: Evidence that the Gamma Rays Come from a Central Engine

    Get PDF
    GRB990123 was a long complex gamma-ray burst with an optical transient that started early within the gamma-ray phase. The peak and power law decay of the early optical emission strongly indicates the presence of a decelerating relativistic shell during that phase. Prior to this burst, it was not known if the shell decelerated during the burst, so an external shock origin for the gamma rays was still possible. If the gamma-rays are produced in the external shock, then the pulse widths should reflect the observed deceleration of the shell and increase by about 2.3. We analyze the fine time structure observed in the gamma-ray data from BATSE and determine that the width of the peaks do not increase as expected for a decelerating shell; the later pulses are, at most, a factor of 1.15 longer than the earlier pulses. We also analyze the variability to determine what fraction of the shell's surface could be involved in the production of the gamma rays, the so-called surface filling factor. For GRB990123 we find a filling factor of 0.008. The lack of pulse width evolution eliminates the only remaining kinematically acceptable external shock explanation for the gamma-ray phase and, thus, the gamma rays must originate at a central engine.Comment: 14 pages, 3 embedded figues, Latex, Submitted to ApJ
    corecore