11 research outputs found

    Magnetic resonance properties of metal-containing nanosystems

    No full text
    Abstract This thesis presents computational first-principles investigations of nuclear magnetic resonance (NMR) parameters in metal-containing nanosystems. Special attention is paid to the relativistic effects observed in the vicinity of heavy elements. Small transition metal complexes are used to assess the feasibility of a quasirelativistic density functional theory (DFT) approach for calculating nuclear magnetic shielding tensors of increasingly heavy metal nuclei, followed by applications of the concept to larger systems. Nuclear magnetic shielding constants, shielding anisotropies, and chemical shifts with respect to metal ions are calculated in dimethyl and water complexes of the group-12 transition metals 67Zn, 111/113Cd, and 199/201Hg, using Hartree–Fock and DFT methods with relativistic corrections from the Breit–Pauli Perturbation Theory (BPPT). Four-component relativistic Dirac–Hartree–Fock and correlated, nonrelativistic ab initio calculations are used to benchmark the BPPT and DFT methods, respectively. The DFT/BPPT approach, combined with Monte Carlo simulations at finite temperatures, is subsequently used to calculate the chemical shift of a guest 129Xe inside a tetrahedral, iron-based cage. Complementing experiments, the encapsulation of xenon is verified, and empirically elusive details are revealed about the guest dynamics. Finally, the full shielding tensors of 31P and 195Pt and the indirect spin–spin coupling constants between the two nuclei are studied in five crystalline platinum(II) dialkyldithiophosphato complexes, concentrating on the solid-state chemical shift anisotropy and asymmetry parameters of phosphorus and platinum. The NMR parameters are calculated using DFT and the two-component zerothorder regular approximation (ZORA) for relativistic effects, combining molecular and solid-state models to incorporate indispensable contributions due to spin–orbit and crystal lattice corrections for the shielding tensors. Four-component matrix-Dirac–Kohn–Sham shielding calculations are used to benchmark the ZORA method. Qualitative, in cases nearly quantitative agreement is obtained with experiments, allowing the validation of the X-ray structures of the complexes, as well as a deeper analysis of the differences between them, including the major contributions to the NMR parameters. The results presented here demonstrate that computational NMR, a branch of relativistic quantum chemistry, is applicable and useful in studying nanoscale systems containing heavy elements, such as transition metals. Approximations are necessary to enable the treatment of large and complex targets, but sufficient accuracy is achieved for supplementing experiments with reliable and useful data that provides additional insight and analysis possibilities

    Ratcheting rotation or speedy spinning: EPR and dynamics of Sc₃C₂@C₈₀

    No full text
    Abstract Besides their technological applications, endohedral fullerenes provide ideal conditions for investigating molecular dynamics in restricted geometries. A representative of this class of systems, Sc₃C₂@C₈₀ displays complex intramolecular dynamics. The motion of the ⁎⁔Sc trimer has a remarkable effect on its electron paramagnetic resonance (EPR) spectrum, which changes from a symmetric 22-peak pattern at high temperature to a single broad lineshape at low temperature. The scandium trimer consists of two equivalent and one inequivalent metal atom, due to the carbon dimer rocking through the Sc₃ triangle. We demonstrate through first-principles molecular dynamics (MD), EPR parameter tensor averaging, and spectral modelling that, at high temperatures, three-dimensional movement of the enclosed Sc₃C₂ moiety takes place, which renders the metal centers equivalent and their magnetic parameters effectively isotropic. In contrast, at low temperatures the dynamics becomes restricted to two dimensions within the equatorial belt of the Ih symmetric C₈₀ host fullerene. This restores the inequivalence of the scandium centers and causes their anisotropic hyperfine couplings to broaden the experimental spectrum

    Clathrate structure determination by combining crystal structure prediction with computational and experimental ÂčÂČâčXe NMR spectroscopy

    No full text
    Abstract We present an approach for the structure determination of clathrates using NMR spectroscopy of enclathrated xenon to select froma set of predicted crystal structures. Crystal structure prediction methods have been used to generate an ensemble of putative structures of o- and m-fluorophenol, whose previously unknown clathrate structures have been studied by ÂčÂČâčXe NMR spectroscopy. The high sensitivity of the ÂčÂČâčXe chemical shift tensor to the chemical environment and shape of the crystalline cavity makes it ideal as a probe for porous materials. The experimental powder NMR spectra can be used to directly confirm or reject hypothetical crystal structures generated by computational prediction, whose chemical shift tensors have been simulated using density functional theory. For each fluorophenol isomer we find one predicted crystal structure whose measured and computed chemical shift tensors agree within experimental and computational error margins and these are thus proposed as the true fluorophenol xenon clathrate structures

    Inside information on xenon adsorption in porous organic cages by NMR

    No full text
    Abstract A solid porous molecular crystal formed from an organic cage, CC3, has unprecedented performance for the separation of rare gases. Here, xenon was used as an internal reporter providing extraordinarily versatile information about the gas adsorption phenomena in the cage and window cavities of the material. 129Xe NMR measurements combined with state-of-the-art quantum chemical calculations allowed the determination of the occupancies of the cavities, binding constants, thermodynamic parameters as well as the exchange rates of Xe between the cavities. Chemical exchange saturation transfer (CEST) experiments revealed a minor window cavity site with a significantly lower exchange rate than other sites. Diffusion measurements showed significantly reduced mobility of xenon with loading. 129Xe spectra also revealed that the cage cavity sites are preferred at lower loading levels, due to more favourable binding, whereas window sites come to dominate closer to saturation because of their greater prevalence

    Chemical shift extremum of ÂčÂČâčXe(aq) reveals details of hydrophobic solvation

    No full text
    Abstract The ÂčÂČâčXe chemical shift in an aqueous solution exhibits a non-monotonic temperature dependence, featuring a maximum at 311 K. This is in contrast to most liquids, where the monotonic decrease of the shift follows that of liquid density. In particular, the shift maximum in water occurs at a higher temperature than that of the maximum density. We replicate this behaviour qualitatively via a molecular dynamics simulation and computing the ÂčÂČâčXe chemical shift for snapshots of the simulation trajectory. We also construct a semianalytical model, in which the Xe atom occupies a cavity constituted by a spherical water shell, consisting of an even distribution of solvent molecules. The temperature dependence of the shift is seen to result from a product of the decreasing local water density and an increasing term corresponding to the energetics of the Xe-H₂O collisions. The latter moves the chemical shift maximum up in temperature, as compared to the density maximum. In water, the computed temperature of the shift maximum is found to be sensitive to both the details of the binary chemical shift function and the coordination number. This work suggests that, material parameters allowing, the maximum should be exhibited by other liquids, too
    corecore