234 research outputs found

    Exploring the impact of varying definitions of exacerbations of chronic obstructive pulmonary disease in routinely collected electronic medical records

    Get PDF
    Background: Validity of exposure and outcome measures in electronic medical records is vital to ensure robust, comparable study findings however, despite validation studies, definitions of variables used often differ. Using exacerbations of chronic obstructive pulmonary disease (COPD) as an example, we investigated the impact of potential misclassification of different definitions commonly used in publications on study findings. Methods: A retrospective cohort study was performed. English primary care data from the Clinical Practice Research Datalink Aurum database with linked secondary care data were used to define a population of COPD patients ā‰„40 years old registered at a general practice. Index date was the date eligibility criteria were met and end of follow-up was 30/12/19, death or end of data collection. Exacerbations were defined using 6 algorithms based on definitions commonly used in the literature, including one validated definition. For each algorithm, the proportion of frequent exacerbators (ā‰„2 exacerbations/year) and exacerbation rates were described. Cox proportional hazard regression was used to investigate each algorithm on the association between heart failure and risk of COPD exacerbation. Findings: A total of 315,184 patients were included. Baseline proportion of frequent exacerbators varied from 2.7% to 15.3% depending on the algorithm. Rates of exacerbations over follow-up varied from 19.3 to 66.6 events/100 person-years. The adjusted hazard ratio for the association between heart failure and exacerbation varied from 1.45, 95% confidence intervals 1.42ā€“1.49, to 1.01, 0.98ā€“1.04. Interpretation: The use of high validity definitions and standardisation of definitions in electronic medical records is crucial to generating high quality, robust evidence

    The expression of P-glycoprotein does influence the distribution of novel fluorescent compounds in solid tumour models

    Get PDF
    Solid tumours display a complex drug resistance phenotype that involves inherent and acquired mechanisms. Multicellular resistance is an inherent feature of solid tumours and is known to present significant barriers to drug permeation in tumours. Given this barrier, do acquired resistance mechanisms such as P-glycoprotein (P-gp) contribute significantly to resistance? To address this question, the multicellular tumour spheroid (MCTS) model was used to examine the influence of P-gp on drug distribution in solid tissue. Tumour spheroids (TS) were generated from either drug-sensitive MCF7WT cells or a drug-resistant, P-gp-expressing derivative MCF7Adr. Confocal microscopy was used to measure time courses and distribution patterns of three fluorescent compounds; calcein-AM, rhodamine123 and BODIPY-taxol. These compounds were chosen because they are all substrates for P-gp-mediated transport, exhibit high fluorescence and are chemically dissimilar. For example, BODIPY-taxol and rhodamine 123 showed high accumulation and distributed extensively throughout the TSWT, whereas calcein-AM accumulation was restricted to the outermost layers. The presence of P-gp in TSAdr resulted in negligible accumulation, regardless of the compound. Moreover, the inhibition of P-gp by nicardipine restored intracellular accumulation and distribution patterns to levels observed in TSWT. The results demonstrate the effectiveness of P-gp in modulating drug distribution in solid tumour models. However, the penetration of agents throughout the tissue is strongly determined by the physico-chemical properties of the individual compounds

    Functional expression of Multidrug Resistance Protein 4 MRP4/ABCC4

    Get PDF
    To study the function and structure of membrane proteins, high quantities of pure and stable protein are needed. One of the first hurdles in accomplishing this is expression of the membrane protein at high levels and in a functional state. Membrane proteins are naturally expressed at low levels, so finding a suitable host for overexpression is imperative. Multidrug resistance protein 4 (MRP4) or ATP-binding cassette subfamily C member 4 (ABCC4) is a multi-transmembrane protein that is able to transport a range of organic anionic compounds (both endogenous and xenobiotic) out of the cell. This versatile transporter has been linked with extracellular signaling pathways and cellular protection, along with conferring drug resistance in cancers. Here we report the use of MRP4 as a case study to be expressed in three different expression systems: mammalian, insect, and yeast cells, to gain the highest yield possible. Interestingly, using the baculovirus expression system with Sf9 insect cells produced the highest protein yields. Vesicular transport assays were used to confirm that MRP4 expressed in Sf9 was functional using a fluorescent cAMP analogue (fluo-cAMP) instead of the traditional radiolabeled substrates. MRP4 transported fluo-cAMP in an ATP-dependent manner. The specificity of functional expression of MRP4 was validated by the use of nonhydrolyzable ATP analogues and MRP4 inhibitor MK571. Functionally expressed MRP4 in Sf9 cells can now be used in downstream processes such as solubilization and purification in order to better understand its function and structure

    Stabilization of human Multidrug Resistance Protein 4 (MRP4/ABCC4) using novel solubilization agents.

    Get PDF
    Membrane proteins (MPs) are important drug discovery targets for a wide range of diseases. However, elucidating the structure and function of native MP is notoriously challenging as their original structure has to be maintained once removed from the lipid bilayer. Conventionally, detergents have been used to solubilize MP with varying degrees of success concerning MP stability. To try to address this, new, more stabilizing agents have been developed, such as calixarene-based detergents and styreneā€“maleic acid (SMA) copolymer. Calixarene-based detergents exhibit enhanced solubilizing and stabilizing properties compared with conventional detergents, whereas SMA is able to extract MPs with their surrounding lipids, forming a nanodisc structure. Here we report a comparative study using classical detergents, calixarene-based detergents, and SMA to assess the solubilization and stabilization of the human ABC transporter MRP4 (multidrug resistance protein 4/ABCC4). We show that both SMA and calixarene-based detergents have a higher solubility efficiency (at least 80%) than conventional detergents, and show striking overstabilization features of MRP4 (up to 70 Ā°C) with at least 30 Ā°C stability improvement in comparison with the best conventional detergents. These solubilizing agents were successfully used to purify aggregate-free, homogenous and stable MRP4, with sevenfold higher yield for C4C7 calixarene detergent in comparison with SMA. This work paves the way to MRP4 structural and functional investigations and illustrates once more the high value of using calixarene-based detergent or SMA as versatile and efficient tools to study MP, and eventually enable drug discovery of challenging and highly druggable targets

    Roles of ABCC1 and ABCC4 in Proliferation and Migration of Breast Cancer Cell Lines

    Get PDF
    ABCC1 and ABCC4 utilize energy from ATP hydrolysis to transport many different molecules, including drugs, out of the cell and, as such, have been implicated in causing drug resistance. However recently, because of their ability to transport signaling molecules and inflammatory mediators, it has been proposed that ABCC1 and ABCC4 may play a role in the hallmarks of cancer development and progression, independent of their drug efflux capabilities. Breast cancer is the most common cancer affecting women. In this study, the aim was to investigate whether ABCC1 or ABCC4 play a role in the proliferation or migration of breast cancer cell lines MCF-7 (luminal-type, receptor-positive) and MDA-MB-231 (basal-type, triple-negative). The effects of small molecule inhibitors or siRNA-mediated knockdown of ABCC1 or ABCCC4 were measured. Colony formation assays were used to assess the clonogenic capacity, MTT assays to measure the proliferation, and scratch assays and Transwell assays to monitor the cellular migration. The results showed a role for ABCC1 in cellular proliferation, whilst ABCC4 appeared to be more important for cellular migration. ELISA studies implicated cAMP and/or sphingosine-1-phosphate efflux in the mechanism by which these transporters mediate their effects. However, this needs to be investigated further, as it is key to understand the mechanisms before they can be considered as targets for treatment

    Structure and function of membrane proteins encapsulated in a polymer-bound lipid bilayer

    Get PDF
    New technologies for the purification of stable membrane proteins have emerged in recent years, in particular methods that allow the preparation of membrane proteins with their native lipid environment. Here, we look at the progress achieved with the use of styrene-maleic acid copolymers (SMA) which are able to insert into biological membranes forming nanoparticles containing membrane proteins and lipids. This technology can be applied to membrane proteins from any host source, and, uniquely, allows purification without the protein ever being removed from a lipid bilayer. Not only do these SMA lipid particles (SMALPs) stabilise membrane proteins, allowing structural and functional studies, but they also offer opportunities to understand the local lipid environment of the host membrane. With any new or different method, questions inevitably arise about the integrity of the protein purified: does it retain its activity; its native structure; and ability to perform its function? How do membrane proteins within SMALPS perform in existing assays and lend themselves to analysis by established methods? We outline here recent work on the structure and function of membrane proteins that have been encapsulated like this in a polymer-bound lipid bilayer, and the potential for the future with this approach

    Validity and interpretation of spirometric recordings to diagnose COPD in UK primary care.

    Get PDF
    BACKGROUND: The diagnosis of COPD is dependent upon clinical judgment and confirmation of the presence of airflow obstruction using spirometry. Spirometry is now routinely available; however, spirometry incorrectly performed or interpreted can lead to misdiagnosis. We aimed to determine whether spirometry undertaken in primary care for patients suspected to have COPD was of sufficient quality and whether their spirometry was correctly interpreted. METHODS: Two chest physicians re-read all spirometric readings for both quality of the procedure and interpretation, received as a part of COPD validation studies using data from the Clinical Practice Research Datalink (CPRD). We then used logistic regression to investigate predictors of correct interpretation. RESULTS: Spirometry traces were obtained for 306 patients, of which 221 (72.2%) were conducted in primary care. Of those conducted in primary care, 98.6% (n=218) of spirometry traces were of adequate quality. Of those traces that were of adequate quality and conducted in primary care, and in whom a general practitioner (GP) diagnosis of COPD had been made, 72.5% (n=218) were consistent with obstruction. Historical records for asthma diagnosis significantly decreased odds of correct interpretation. CONCLUSION: The quality of the spirometry procedure undertaken in primary care is high. However, this was not reflected in the quality of interpretation, suggesting an unmet training in primary care. The quality of the spirometry procedure as demonstrated by spirometric tracings provides a re-assurance for the use of spirometric values available in the electronic health care record databases for research purposes

    Hsc70-induced changes in clathrin-auxilin cage structure suggest a role for clathrin light chains in cage disassembly

    Get PDF
    The molecular chaperone, Hsc70, together with its co-factor, auxilin, facilitates the ATP-dependent removal of clathrin during clathrin-mediated endocytosis in cells. We have used cryo-electron microscopy to determine the 3D structure of a complex of clathrin, auxilin401-910 and Hsc70 at pH 6 in the presence of ATP, frozen within 20 seconds of adding Hsc70 in order to visualize events that follow the binding of Hsc70 to clathrin and auxilin before clathrin disassembly. In this map, we observe density beneath the vertex of the cage that we attribute to bound Hsc70. This density emerges asymmetrically from the clathrin vertex, suggesting preferential binding by Hsc70 for one of the three possible sites at the vertex. Statistical comparison with a map of whole auxilin and clathrin previously published by us reveals the location of statistically significant differences which implicate involvement of clathrin light chains in structural rearrangements which occur after Hsc70 is recruited. Clathrin disassembly assays using light scattering suggest that loss of clathrin light chains reduces the efficiency with which auxilin facilitates this reaction. These data support a regulatory role for clathrin light chains in clathrin disassembly in addition to their established role in regulating clathrin assembly

    Predicting mortality after acute coronary syndromes in people with chronic obstructive pulmonary disease

    Get PDF
    Objective To assess the accuracy of Global Registry of Acute Coronary Events (GRACE) scores in predicting mortality at 6 months for people with chronic obstructive pulmonary disease (COPD) and to investigate how it might be improved. Methods Data were obtained on 481 849 patients with acute coronary syndrome admitted to UK hospitals between January 2003 and June 2013 from the Myocardial Ischaemia National Audit Project (MINAP) database. We compared risk of death between patients with COPD and those without COPD at 6 months, adjusting for predicted risk of death. We then assessed whether several modifications improved the accuracy of the GRACE score for people with COPD. Results The risk of death after adjusting for GRACE score predicted that risk of death was higher for patients with COPD than that for other patients (RR 1.29, 95% CI 1.28 to 1.33). Adding smoking into the GRACE score model did not improve accuracy for patients with COPD. Either adding COPD into the model (relative risk (RR) 1.00, 0.94 to 1.02) or multiplying the GRACE score by 1.3 resulted in better performance (RR 0.99, 0.96 to 1.01). Conclusions GRACE scores underestimate risk of death for people with COPD. A more accurate prediction of risk of death can be obtained by adding COPD into the GRACE score equation, or by multiplying the GRACE score predicted risk of death by 1.3 for people with COPD. This means that one third of patients with COPD currently classified as low risk should be classified as moderate risk, and could be considered for more aggressive early treatment after non-ST-segment elevation myocardial infarction or unstable angina

    Insights into membrane interactions and their therapeutic potential

    Get PDF
    Recent research into membrane interactions has uncovered a diverse range of therapeutic opportunities through the bioengineering of human and non-human macromolecules. Although the majority of this research is focussed on fundamental developments, emerging studies are showcasing promising new technologies to combat conditions such as cancer, Alzheimer's and inflammatory and immune-based disease, utilising the alteration of bacteriophage, adenovirus, bacterial toxins, type 6 secretion systems, annexins, mitochondrial antiviral signalling proteins and bacterial nano-syringes. To advance the field further, each of these opportunities need to be better understood, and the therapeutic models need to be further optimised. Here, we summarise the knowledge and insights into several membrane interactions and detail their current and potential uses therapeutically
    • ā€¦
    corecore