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ABSTRACT 

Membrane proteins (MP) are important drug discovery targets for a wide range of 

diseases. However, elucidating the structure and function of native MP is notoriously 

challenging as their original structure has to be maintained once removed from the 

lipid bilayer. Conventionally detergents have been used to solubilize MP with varying 

degrees of success concerning MP stability. To try to address this, new more 

stabilizing agents have been developed such as calixarene-based detergents and 

styrene maleic acid co-polymer (SMA). Calixarene based detergents exhibit enhanced 

solubilizing and stabilizing properties compared to conventional detergents, whereas 

SMA is able to extract membrane proteins with their surrounding lipids forming a 

nanodisc structure. Here we report a comparative study using classical detergents, 

calixarene based detergents and SMA to assess the solubilization and stabilization of 

the human ABC transporter MRP4 (multidrug resistance protein 4/ABCC4). We show 

that both SMA and calixarene based detergents have a higher solubility efficiency (at 

least 80%) than conventional detergents and show striking overstabilization features 

of MRP4 (up to 70°C) with at least 30°C stability improvement in comparison to the 

best conventional detergents. These solubilizing agents were successfully used to 

purify aggregate free homogenous and stable MRP4, with 7-fold higher yield for 

C4C7 Calixarene detergent in comparison to SMA. This work paves the way to 

MRP4 structural and functional investigations and illustrates once more the high 

value of using Calixarene based detergent or SMA as versatile and efficient tools to 

study MP and eventually enable drug discovery of challenging and highly druggable 

targets. 
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 INTRODUCTION 

Membrane proteins (MP) are capable of controlling what enters and exits cells 

through transporters and channels, modulating cell signalling with receptors, 

catalysing reactions by utilizing enzymes and maintaining structure with anchoring 

proteins. Membrane proteins are highly valuable pharmaceutical targets and 

understanding the structure and function of these important proteins is vital in the 

production of beneficial pharmaceutical drugs. Observing membrane proteins in their 

native state is the most useful for producing effective pharmaceutical drugs, as there 

have been no modifications to the native structure. Unfortunately, membrane proteins 

are not stable outside of the native lipid environment. In order to gain a true 

understanding of how membrane proteins are structured and function they must be 

viewed in isolation (purified). This means producing a highly stable membrane 

protein that retains its native structure through purification processes and is able to be 

used in functional and structural studies. To overcome this stability problem 

membrane proteins have often been altered either by changing the native amino acid 

sequence through protein mutagenesis or engineering1. Antibodies have also been 

used in efforts to stabilize membrane protein2 but all these methods come with a price, 

they might alter the native conformation of the membrane protein. Investigating 

membrane proteins in their native state is challenging as they often become highly 

unstable when solubilized with. Solubilization reagents are available in a range of 

strengths form harsh anionic detergents such as SDS and Sarkosyl, mild zwitterionic 

detergents, Fos-Cholines (FC) and CHAPS, to weaker non-ionic detergent such as 

dodecylmaltoside (DDM) and octyl glucoside (OG). All these contain a similar 

structure with a hydrophobic acyl tail and a hydrophilic head group allowing them to 

act as amphiphiles removing the lipids surrounding the membrane protein. In doing 

so, they are removing the lateral pressure exerted by the lipids keeping the membrane 

protein in its correct conformation and replacing it with much less stable detergents. 

Although these conventional detergents have been used for membrane protein studies, 

success rate is variable and is largely protein dependent. Novel detergents have 

therefore been produced in an effort to stabilize a much greater variety of membrane 

proteins. 

Many of these novel detergents are built on previous conventional detergents utilizing 

their solubilization capabilities but also enhancing their stabilizing properties. MNG 
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(Maltose-Neopentyl Glycol) and GNG (Glucose-Neopentyl Glycol) are two novel 

detergents that have very similar structures to DDM and OG respectively, through the 

addition of a central quaternary carbon atom derived from neopentyl glycol,  two 

hydrophobic and hydrophilic groups can be connected 3. Facial amphiphiles represent 

a slightly different approach to maintaining membrane protein stability. These 

molecules are comprised of a hydrophobic sterol backbone capable of solubilization 

attached to different head groups many of which are maltose based 3. Facial 

amphiphiles have been shown to solubilize and aid in the crystallisation membrane 

proteins 4 and have further been modified to create tandem facial amphiphiles and are 

able to span the width of a lipid bilayer 3.  

Calixarene based detergents have been shown to have a greater ability to stabilize 

membrane proteins 5-6. They contain a calixarene platform comprising of four 

aromatic rings, three in the para position and the fourth attached to the hydrocarbon 

chain 6. By altering the length of the hydrocarbon tail the solubilization properties are 

affected, increasing their efficiency. Different head groups such as carboxylate or 

sulfonate groups can be attached to the calixarene platform. These head groups can 

interact, through the formation of salt bridges, with the aromatic or charged residues 

at the lipid-protein interface creating a more stable membrane protein-detergent 

complex 5. A bacterial ATP Binding Cassette (ABC) transporter, BmrA has 

previously been extracted with C4C7 (calixarene containing 7 carbon length 

hydrocarbon chain) and it maintained 90% function whereas solubilization with DDM 

or FC12 resulted in a 90-99% loss of function. Calixarenes enhance the stability of 

solubilized membrane proteins 5-6.  

A different approach to solubilizing and stabilizing membrane proteins is through the 

use of styrene maleic acid (SMA) co-polymer. This polymer is comprised of 

alternating units of styrene and maleic acid in varying ratios. They are able to insert 

into membranes and solubilize bi-layers forming SMA lipid particles (SMALPs)7-8. 

Membrane proteins can become trapped inside these SMALPs, solubilizing the 

membrane protein and encapsulating it in a disc of its native lipids 8-9 (Figure 1A). 

This is very different from detergent solubilization (Figure 1B). Once solubilized in 

SMA, the membrane protein can be purified without the need for detergents in any of 

the buffers, making it much more cost effective 10-11. These SMA lipid particles 

(SMALP) can also be used in functional studies as both sides of membrane protein 
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are accessible and have been shown to produce highly stable membrane proteins 10, 12. 

SMA has successfully been used to extract a variety of ABC transporters from 

different expression systems 10, 13 along with ligand binding studies of ABC 

transporters and GPCRs 12, functional reconstitution of KscA 11as well as lipid 

analysis. These examples show the versatility of the SMA polymer in aiding 

functional understanding of membrane proteins. SMALP purified proteins have been 

used for structural studies by both crystallography 14
 and electron microscopy 10, 15-17.  

Most reported MP structure and function studies describe the use of one main reagent. 

Therefore, a comparative study is very often missing. In the current work, we have 

applied classical detergents, calixarene based detergents and SMA polymers to 

investigate in parallel the solubilization and stabilization of the same MP membrane 

protein target. We have chosen a member of the ABC transporter family 

(ABCC4/MRP4) as a model membrane protein. ABC transporters are integral 

membrane proteins that are found in all types of organisms from prokaryotes to 

humans. They utilize energy from ATP binding and hydrolysis to transport a variety 

of substrates across the biological lipid bilayer 18. MRP4 is made of four core 

domains: two transmembrane domains (TMDs) and two nucleotide binding domains 

(NBD). Each of the two TMDs comprises 6 transmembrane alpha helices and the two 

NBDs have binding sites for ATP which are homologous throughout the super family 

unlike the TMDs 19. As its name suggests MRP4 can confer resistance to drugs 

including cancer chemotherapy, antivirals and antibiotics20. It can also transport 

signalling molecules such as cyclic nucleotides and eicosnaoids making it a drug 

target for inflammation, pain21 and cardiovascular disease22, and it has also been 

implicated in the development of cancer23-24. To date there is no known structure of 

human MRP4. To investigate MRP4 structure and function, it is critical to be express 

it, solubilize it and purify it while maintaining its functionality and structural 

integrity. Here we show that using calixarene based detergent or SMA, allowed the 

purification of very stable, homogenous MRP4.  
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MATERIAL & METHODS 

Expression and Membrane preparation 

Expression of the recombinant human MRP4-his6 within Sf9 cells was conducted 

using a baculovirus encoding for recombinant MRP4 generated from a pFastBac-

MRP4-his6 construct with a C-terminal hexa-his tag. Typically, Sf 9 insect cells 

expression was using the Bac-to-Bac Baculovirus system for 48 hours at MOI of 2. 

Infected Sf 9 cells were harvested by centrifugation at 6000 g for 10 minutes. The cell 

pellet was resuspended in homogenisation buffer (50mM Tris-HCl pH 7.4, 250mM 

Sucrose, 0.25mM CaCl2 and protease inhibitors (1.3µM benzamidine, 1.8µM 

leupeptin and 1µM pepstatin). Homogenisation of Sf 9 cells was carried out using 

nitrogen cavitation at 500 psi for 15 minutes on ice. The cell lysate was centrifuged at 

750 g for 10 minutes, the supernatant was then subsequently centrifuged at 100,000 g 

for 20 minutes. The membrane pellet was resuspended in TSB buffer (50mM Tris-

HCl pH 7.4, 250mM Sucrose) and stored at -80oC. 

 

Solubilization 

SMA polymers were obtained from Cray Valley (SMA 2000) or Polyscope 

(SZ25010) as styrene-maleic anhydride polymers and were hydrolysed in 1M NaOH, 

refluxed and freeze dried to form the styrene-maleic acid form as described in 13.   

Dot blot analysis was carried out by solubilizing MRP4 Sf 9 membranes at 5 mg/mL 

total protein using 10x critical micellar concentration (CMC) of each detergent 

(calixarene based detergents, CALIXAR or conventional detergents, VWR) or 

2.5%(w/v) for SMA polymers, for 2 hours at 4oC. 200μL was loaded into the Dot blot 

apparatus (Biorad), filtered through nitrocellulose and washed with 3 x 200µl PBS to 

remove insoluble material. An anti-his HRP antibody (3:2000, R&D Systems) was 

used to detect MRP4 and quantified on a ChemiDoc imaging system. Solubility 

efficiency was calculated by comparing the density of the dot to an SDS control. 

Western Blot analysis was performed to assess the solubilization efficiency. Sf 9 

MRP4 membranes at 5 mg/mL total protein were solubilized using 10x CMC 

detergent, or 2.5%(w/v) SMA polymer at 4oC for 2 hours then centrifuged at 100,000 

g. The insoluble pellet was resuspended in 1% (w/v) SDS. Samples were run on SDS-
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PAGE and transferred to PVDF membrane and a primary anti-his antibody was used 

to detect MRP4. Solubility efficiency was calculated via densitometry analysis using 

ImageJ or Image Studio analysis software by calculating the intensity of the 

solubilised band as a percentage of the total (soluble + insoluble). Optical density 

(OD) readings were measured on an Ultrospec 2000 spectrophotometer (Pharmacia 

Biotech) at 600nm. 

 

Western blot based thermal shift assay 

Thermostability of solubilized or purified MRP4 was measured by heating samples 

for 10 minutes at different temperatures (4 – 90oC) then centrifuged at 14, 000g for 10 

minutes. The supernatant was removed and analysed by Western Blot. Data fitting 

was performed by fitting a dose (temperature) vs normalised response curve using 

GraphPad Prism. The method was previously described and applied to GPCR 

solubilization 25. 

 

MRP4 Purification 

Sf 9 MRP4 membranes solubilized with 10x CMC Calixarenes were mixed with Ni-

NTA affinity resin at a volumetric ratio of 10 : 1 (soluble MRP4 : resin) for 2 hours at 

4oC. Resin was washed with 3 x 10 column volumes (CV) 5mM Imidazole and eluted 

in 5 x 1 CV using 200 mM imidazole. All purification buffers were supplemented 

with 2 CMC Calixar detergents. MRP4 was concentrated using a 50kDa MWCO spin 

concentrator. 

Affinity purification using SMA polymer was performed using an adapted protocol 

from 13. Sf 9 MRP4 membranes solubilized with 2.5% SMA 2000 were mixed with 

Ni-NTA resin overnight at 4oC a volumetric ratio of 20:1 (soluble MRP4 : resin). 

Resin was washed with 5 x 10 CV 20mM imidazole and eluted in 5 x 1 CV using 200 

mM imidazole. MRP4 was concentrated using a 30 MWCO spin column. 
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RESULTS 

MRP4 solubilization 

We wanted to find out which detergents or polymers were best for both solubilizing 

and stabilizing MRP4. We started by measuring their solubilization properties by 

screening a large range of detergents and SMA polymers monitored by dot blot 

(Figure 2A). All conventional detergents screened were able to solubilize around 

50% of MRP4 from Sf 9 cells membranes with the exception of harsh anionic 

Sarkosyl which was equal to SDS. Calixarene detergents tested here had the same 

calix[4]arene platform onto which three acidic methylene-carboxylate groups have 

been grafted at the para position while the other face bears a single aliphatic chain of 

different lengths.  Typically, C4C5, C4C7 and C4C8 correspond to detergents with 5, 

7 and 8 carbons length, respectively.  C4C5, C4C7 and C4C8 were able to solubilize 

over 90% of the MRP4. Anything below (C4C3) or above (C4C10 C4C11 and 

C4C12) decreased the solubilization efficiency by around half and were comparable 

to conventional detergents. The length of the acyl tail in calixarene detergents 

therefore plays a key role in solubilization efficiency. The SMA polymers also had 

high solubilization efficiency with SMA 2000 and SZ25010 both at 100%. These 

results show that novel solubilizing agents are capable of greatly increasing the 

solubilization efficiency of MRP4 when compared to conventional detergents. The 

top conditions with the highest solubility efficiency revealed by dot blot were chosen 

to measure and confirm the solubility efficiency using western blot analysis (Figure 

2B). C4C5 was shown to have a very high solubility efficiency of 90%; C4C7 was at 

76% and C4C8 was at 65% solubility again showing the length of the acyl tail can 

affect solubility efficiency. SMA 2000 and SZ25010 solubility efficiency was at 83 

and 73%, respectively. Only detergent mixtures with harsh conventional detergents 

such as Sarkosyl and FC12 allowed higher solubilization efficiency than Calixarene 

detergents alone. Interestingly the kinetics of MRP4 solubilisation by SMA 2000 

were much faster than is typically reported for SMA polymers 10 (Supplementary 

Figure 1) and it can be seen that the vast majority of solubilisation events occur within 

the first 15 minutes.    
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Thermostability of solubilized MRP4 

Before moving onto purification, the ability of these solubilizing agents to stabilize 

MRP4 was assessed using a previously established western blot based thermal shift 

assay 25. This assay relies on the assumption that unstable heated proteins will 

aggregate and after ultracentrifugation and western blot the band intensity 

corresponding to the protein will decay proportionally to its instability. By measuring 

the amount of MRP4 that remains soluble at increasing temperatures the denaturing 

point (Tm), 50% soluble, can be estimated. MRP4 solubilized using either C4C5 or 

C4C7 showed a very high Tm of around 70oC (Figure 3A). SMA 2000 solubilised 

MRP4 also showed a very high Tm of around 75oC (Figure 3C). The conventional 

detergents chosen all have a similar solubilization percentage and had previously been 

used in studies involving the solubilization of ABC transporters. The Tm for 

conventional detergents ranged from 28 to 40oC with FC 12 being the highest and 

C12E8 the lowest (Figure 3B). Thus, the Tm for MRP4 in the calixarene detergents 

(C4C5 and C4C7) or SMALPs was 30°C or 35°C higher than the best conventional 

detergent for MRP4 stability, respectively.  

 

MRP4 Purification 

To evaluate the impact of solubilization reagents on protein purification, his-tag 

affinity purification was performed for MRP4 solubilized with either C4C7, SMA 

2000 or DDM. Figure 4A shows that MRP4 was specifically loaded and eluted from 

the Ni-NTA affinity column. SDS-PAGE gels demonstrate a relatively pure MRP4 

after one affinity purification step for both C4C7 and SMA 2000 (Figure 4B). 

However, with DDM, the MRP4 is not at all pure, with multiple contaminating bands 

which are equally as intense as the MRP4 band (Figure 4B). Notably C4C7 

consistently gave higher yields of pure protein (184±8 µg/l cell culture) compared to 

SMA 2000 (26±7 µg/l cell culture).  

Native PAGE Western blot analysis (Figure 5) confirmed that one main non-

aggregated population of MRP4 was obtained for both C4C7 and SMA 2000, 

demonstrating the homogeneity and good behavior in solution when SMA 2000 or 

C4C7 were used for solubilization and purification. MRP4 solubilized and purified in 
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C4C7 could easily be concentrated using centriprep centrifugal filter unit without 

generating any aggregates since the MRP4 band became more intense upon 

concentration with no aggregate species observed on the well of the gel (Figure 5A, 

compare lane 2 to 1). For both C4C7 and SMA 2000 storage for 7 days at 4°C had no 

effect on MRP4 aggregation. Similarly, MRP4 showed no changes after freezing and 

thawing steps in C4C7 or SMA 2000. The same aggregate free behavior in solution 

was observed even in absence of cryoprotectant (10% glycerol) (Figure 5).  

The thermostability of purified MRP4 was also examined using the same western blot 

thermal shift assay as previously described. Interestingly, the same tendencies were 

noticed after solubilization and purification of MRP4 (Figure 6). In fact, SMA 2000 

and C4C7 maintained high stability of MRP4 during purification and the Tm 

remained high, 71oC and 65oC respectively (Figure 6A and 6B), whereas MRP4 

solubilized and purified in DDM has a Tm of 49oC (Figure 6C). 
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DISCUSSION 

Here we show that MRP4 was successfully solubilized and purified using both C4C7 

and SMA 2000. Concerning calixarene based detergent, the length of the hydrophobic 

chain controls solubilization efficiency. MRP4 was kept in a very stable state 

compared to the best of the conventional detergents DDM or FC12. Indeed, the 

stabilizing properties of C4C7 and SMA 2000 were demonstratred by a dramatic 

thermostability improvement of 30 and 35°C, respectively at the solubilization step in 

comparison to the best conventional detergents. This stabilization shift is very high 

considering that the MRP4 investigated was full length, wild type without any single 

point mutation. It is very common to heavily mutate membrane proteins to improve 

their thermostability 26. This was the case of for the Adenosine receptor which was 

mutated at 8 residues and had 96 amino-acids at the carboxy-terminal deleted leading 

to ~15°C stability improvement 27. Our results illustrate the fact that there is no need 

to systematically mutate or truncate MPs in order to stabilize them. Using favorable 

chemical environments can impact positively the stability and functionality of MPs. 

The fact that C4C7 detergent exhibits a comparable overstabilizing features in 

comparison to SMA is outstanding considering that in contrast to detergents, SMALP 

particles contain lipids and it is well accepted that lipids exert stabilizing effect on MP 

28. The fact that stability improvement was reduced (to +16 and +22oC for C4C7 and 

SMA, respectively in comparison to DDM) when MRP4 was solubilized and purified 

in comparison to solubilized only, is maybe due to the loss of some key stabilizing 

lipids during the purification process. Further studies including mass spectrometry 

analysis are required to confirm that. Differences in the degree of cooperativity of the 

thermal shift curves were noticed. This was also observed for other MPs using other 

detergents 29. Further studies using other thermostability assays are required to 

explain the contribution of the chemical environment (lipid/ detergent/ polymer) and 

the MP dynamics (in detergent or in SMA) on the shape of thermal shift curves.  

Now that good solubilization and stabilization conditions have been found, structural 

investigation of MRP4 can begin. The next steps would be to use cryo-EM to 

investigate MRP4 structure in solution. Preliminary negative stain electron 

microscopy images showed isolated particles of MRP4 (data not shown). SMA and 

Calixarene based detergent have both previously been shown to be compatible with 

electron microscopy 15-17, 30. It has previously been reported that SMA somehow 
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interferes with binding to Ni2+ resin13, 31-32, and this might explain the difference in 

protein yield. It has also been previously reported that SMA 2000 results in much 

more pure protein samples than conventional detergents10, 33. Here it is shown that 

SMA 2000 gave a good degree of purity following a single step affinity purification, 

but, in contrast to more conventional detergents, C4C7 also gave a comparable degree 

of purity. There were however some limitations found for each approach. Due to its 

calixarene platform, Calixarene detergent absorbs at 280 nm which makes protein 

quantification difficult and limits the use of some biophysical charaterization such as 

Circular Dichroism or tryptophan fluoresence. To adress this limitation, new classes 

of compounds with similar architecture but without the calixarene platform have been 

designed and applied succesfully to MP stabilization 34, and this could be a promising 

future direction for MRP4 studies. The addition of mild groups such as saccharide 

heads or cholesterol like groups provide more diversity for the such class of 

stabilizing detergent 6, 35. Current limitations to the SMA approach include the disc 

size. The typical size is 10-12 nm diameter, which may mean some large proteins or 

protein complexes will not fit. However, recent reports have suggested there is some 

flexibility with this 16. SMA is also sensitive to divalent cations such as magnesium 

and calcium 33. This is particularly problematic for proteins like the ABC transporters 

which require Mg2+ for ATP hydrolysis. Alternative polymers such as styrene 

maleimide SMI and diisobutylene -maleic acid (DIBMA) have also being developed 

which are reported to overcome the divalent cation sensitivity by replacing the maleic 

acid with either maleimide (SMI) or replacing the styrene with diisobutylene 

(DIBMA) 36-37.  

Taken together, we report here that if used for solubilization and purification, C4C7 

and SMA maintain the structural integrity of MRP4. In addition to structural studies, 

these findings open up the possibility of functional and drug discovery approaches 

with MRP4. Calixarenes based detergents and SMA represent important versatile 

tools as part of the fast-growing toolbox to help unlock the drug discovery potential of 

challenging membrane protein targets. This is and will undoubtedly be the case for 

antibody discovery, structure-based drug design and small molecule screening of 

highly druggable membrane proteins  
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FIGURES LEGEND 

Figure 1- Schematic representation of membrane proteins in detergent (A) or in 

Styrene maleic acid (B). Membrane protein helices are represented in blue. SMA, 

phospholipids and detergent are also indicated. 

 

Figure 2- Solubilization of MRP4.  

A- Screening of conventional detergents, Calixarenes and SMA polymers for MRP4 

solubilization analysed by Dot blot using a His-tag antibody. All dots intensities were 

compared to an SDS control. Data are the mean and variation between duplicates. B- 

Solubilization efficiency assessed by western blot for the selected conditions from dot 

blot analysis.  

 

Figure 3- Thermostability of MRP4.  

Thermostability was measured by the percent of soluble MRP4 present after heating. 

A- thermostability of MRP4 solubilized with calixarenes C4C5 and C4C7 from 45 to 

95oC (n=2). B- Conventional detergent thermostability from 4 to 90oC (n=2). C- 

thermostability results for MRP4 solubilized with SMA2000 from 40 to 89oC (n=2). 

The Tm was calculated as the temperature at which 50% remained soluble. Dose 

(temperature) vs normalised response curve fitted for all graphs.  Data represent the 

mean and the variation between duplicates. 

 

Figure 4- MRP4 purification.  

A- Western blot showing His-tag affinity purification of MRP4 after solubilization 

using C4C7, SMA 2000 or DDM. B- Instant Blue stained SDS-PAGE of purified 

MRP4 using C4C7, SMA 2000 or DDM.  
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Figure 5- Native gel analysis. 

 Native PAGE and western blot analysis to assess the behavior in solution of MRP4 

purified with C4C7 (A) or SMA 2000 (B). Examined after protein concentration using 

centrifugal filter concentrators, storage at 4°C for 7 days or after freezing/ thawing 

steps. +Gly corresponds to the addition to 10% Glycerol before freezing and thawing 

steps. 

 

Figure 6- Thermostability of purified MRP4. 

 Thermostability curves of MRP4 purified in SMA (A), C4C7 (B) and DDM (C) 

respectively, based on percent soluble after heating and centrifugation (n=3 ±SEM). 

The blue line represents the transition/melting point (Tm), the temperature at with 

50% of MRP4 is still soluble as previously described 25 . Western blots below graph 

A, B and C show examples of amounts of soluble MRP4 at each temperature in SMA, 

C4C7 and DDM respectively. The density of each of the band was taken and 

compared to the 4oC control to calculate the percent soluble.  
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Supplementary Figure 1: Kinetics of MRP4 solubilisation with SMA 2000. 
The solubilisation of MRP4 expressing Sf9 cell membranes at room 
temperature was monitored over time by measuring both the turbidity/OD600 
(closed circles) to monitor general membrane disruption, and Western blotting 
to measure MRP4-specific solubilisation (open circles). It can be seen that the 
solubilisation was quick, and essentially complete after 15 minutes. 

 

 


