26 research outputs found

    Evolution from adherent to suspension: systems biology of HEK293 cell line development

    Get PDF
    The need for new safe and efficacious therapies has led to an increased focus on biologics produced in mammalian cells. The human cell line HEK293 has bio-synthetic potential for human-like production attributes and is currently used for manufacturing of several therapeutic proteins and viral vectors. Despite the increased popularity of this strain we still have limited knowledge on the genetic composition of its derivatives. Here we present a genomic, transcriptomic and metabolic gene analysis of six of the most widely used HEK293 cell lines. Changes in gene copy and expression between industrial progeny cell lines and the original HEK293 were associated with cellular component organization, cell motility and cell adhesion. Changes in gene expression between adherent and suspension derivatives highlighted switching in cholesterol biosynthesis and expression of five key genes (RARG, ID1, ZIC1, LOX and DHRS3), a pattern validated in 63 human adherent or suspension cell lines of other origin

    Automated Solid-Phase Subcloning Based on Beads Brought into Proximity by Magnetic Force

    Get PDF
    In the fields of proteomics, metabolic engineering and synthetic biology there is a need for high-throughput and reliable cloning methods to facilitate construction of expression vectors and genetic pathways. Here, we describe a new approach for solid-phase cloning in which both the vector and the gene are immobilized to separate paramagnetic beads and brought into proximity by magnetic force. Ligation events were directly evaluated using fluorescent-based microscopy and flow cytometry. The highest ligation efficiencies were obtained when gene- and vector-coated beads were brought into close contact by application of a magnet during the ligation step. An automated procedure was developed using a laboratory workstation to transfer genes into various expression vectors and more than 95% correct clones were obtained in a number of various applications. The method presented here is suitable for efficient subcloning in an automated manner to rapidly generate a large number of gene constructs in various vectors intended for high throughput applications

    Ribosome Display Selection of a Murine IgG1 Fab Binding Affibody Molecule Allowing Species Selective Recovery Of Monoclonal Antibodies

    Get PDF
    Affinity reagents recognizing constant parts of antibody molecules are invaluable tools in immunotechnology applications, including purification, immobilization, and detection of immunoglobulins. In this article, murine IgG1, the primary isotype of monoclonal antibodies (mAbs) was used as target for selection of novel binders from a combinatorial ribosome display (RD) library of 1011 affibody molecules. Four rounds of selection using three different mouse IgG1 mAbs as alternating targets resulted in the identification of binders with broad mIgG1 recognition and dissociation constants (KD) in the low nanomolar to low micromolar range. For one of the binders, denoted Zmab25, competition in binding to full length mIgG1 by a streptococcal protein G (SPG) fragment and selective affinity capture of mouse IgG1 Fab fragments after papain cleavage of a full mAb suggest that an epitope functionally overlapping with the SPG-binding site in the CH1 domain of mouse IgG1 had been addressed. Interestingly, biosensor-based binding experiments showed that neither human IgG1 nor bovine Ig, the latter present in fetal bovine serum (FBS) was recognized by Zmab25. This selective binding profile towards murine IgG1 was successfully exploited in species selective recovery of two different mouse mAbs from complex samples containing FBS, resembling a hybridoma culture supernatant

    The human secretome

    Get PDF
    The proteins secreted by human cells (collectively referred to as the secretome) are important not only for the basic understanding of human biology but also for the identification of potential targets for future diagnostics and therapies. Here, we present a comprehensive analysis of proteins predicted to be secreted in human cells, which provides information about their final localization in the human body, including the proteins actively secreted to peripheral blood. The analysis suggests that a large number of the proteins of the secretome are not secreted out of the cell, but instead are retained intracellularly, whereas another large group of proteins were identified that are predicted to be retained locally at the tissue of expression and not secreted into the blood. Proteins detected in the human blood by mass spectrometry-based proteomics and antibody-based immuno-assays are also presented with estimates of their concentrations in the blood. The results are presented in an updated version 19 of the Human Protein Atlas in which each gene encoding a secretome protein is annotated to provide an open-access knowledge resource of the human secretome, including body-wide expression data, spatial localization data down to the single-cell and subcellular levels, and data about the presence of proteins that are detectable in the blood

    Reactive oxygen species as an initiator of toxic innate immune responses in retort to SARS-CoV-2 in an ageing population, consider N-acetylcysteine as early therapeutic intervention

    No full text
    During the current COVID-19 pandemic, a need for evaluation of already available drugs for treatment of the disease is crucial. Hereby, based on literature review from the current pandemic and previous outbreaks with corona viruses we analyze the impact of the virus infection on cell stress responses and redox balance. High levels of mortality are noticed in elderly individuals infected with SARS-CoV2 and during the previous SARS-CoV1 outbreak. Elderly individuals maintain a chronic low level of inflammation which is associated with oxidative stress and inflammatory cytokine production, a condition that increases the severity of viral infections in this population. Coronavirus infections can lead to alterations of redox balance in infected cells through modulation of NAD + biosynthesis, PARP function along with altering proteasome and mitochondrial function in the cell thereby leading to enhanced cell stress responses which further exacerbate inflammation. ROS production can increase IL-6 production and lipid peroxidation resulting in cell damage. Therefore, early treatment with anti-oxidants such as NAC during COVID-19 can be a way to bypass the excessive inflammation and cell damage that lead to severe infection, thus early NAC as intervention should be evaluated in a clinical trial setting. © 2020 The Author

    Autophagy and intracellular product degradation genes identified by systems biology analysis reduce aggregation of bispecific antibody in CHO cells

    Get PDF
    Aggregation of therapeutic bispecific antibodies negatively affects the yield, shelf-life, efficacy and safety of these products. Pairs of stable Chinese hamster ovary (CHO) cell lines produced two difficult-to-express bispecific antibodies with different levels of aggregated product (10–75% aggregate) in a miniaturised bioreactor system. Here, transcriptome analysis was used to interpret the biological causes for the aggregation and to identify strategies to improve product yield and quality. Differential expression- and gene set analysis revealed upregulated proteasomal degradation, unfolded protein response and autophagy processes to be correlated with reduced protein aggregation. Fourteen candidate genes with the potential to reduce aggregation were co-expressed in the stable clones for validation. Of these, HSP90B1, DDIT3, AKT1S1, and ATG16L1, were found to significantly lower aggregation in the stable producers and two (HSP90B1 and DNAJC3) increased titres of the anti-HER2 monoclonal antibody trastuzumab by 50% during transient expression. It is suggested that this approach could be of general use for defining aggregation bottlenecks in CHO cells

    Tissue-based map of the human proteome

    No full text
    Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes.We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body

    Tissue-based map of the human proteome

    No full text
    Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes.We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body
    corecore