1,492 research outputs found

    Structural relaxation in the hydrogen-bonding liquids N-methylacetamide and water studied by optical Kerr-effect spectroscopy

    Full text link
    Structural relaxation in the peptide model N-methylacetamide (NMA) is studied experimentally by ultrafast optical Kerr-effect spectroscopy over the normal-liquid temperature range and compared to the relaxation measured in water at room temperature. It is seen that in both hydrogen-bonding liquids, beta relaxation is present and in each case it is found that this can be described by the Cole-Cole function. For NMA in this temperature range, the alpha and beta relaxations are each found to have an Arrhenius temperature dependence with indistinguishable activation energies. It is known that the variations on the Debye function, including the Cole-Cole function, are unphysical, and we introduce two general modifications: one allows for the initial rise of the function, determined by the librational frequencies, and the second allows the function to be terminated in the alpha relaxation

    A Simple, Quick, and Precise Procedure for the Determination of Water in Organic Solvents

    Get PDF
    A procedure for the UV/VIS-spectroscopic determination of water by the use of a solvatochromic pyridiniumphenolate betaine is given. The water content of organic solvents is calculated by a two parameter equation from λmax of the dye. A typical, detection limit is of the order of 1 mg in 1 ml solvent for routine spectrometers. The parameters for the determination of water are given for a number of commonly used solvents

    Buckling of Carbon Nanotube-Reinforced Polymer Laminated Composite Materials Subjected to Axial Compression and Shear Loadings

    Get PDF
    A multi-scale method to predict the stiffness and stability properties of carbon nanotube-reinforced laminates has been developed. This method is used in the prediction of the buckling behavior of laminated carbon nanotube-polyethylene composites formed by stacking layers of carbon nanotube-reinforced polymer with the nanotube alignment axes of each layer oriented in different directions. Linking of intrinsic, nanoscale-material definitions to finite scale-structural properties is achieved via a hierarchical approach in which the elastic properties of the reinforced layers are predicted by an equivalent continuum modeling technique. Solutions for infinitely long symmetrically laminated nanotube-reinforced laminates with simply-supported or clamped edges subjected to axial compression and shear loadings are presented. The study focuses on the influence of nanotube volume fraction, length, orientation, and functionalization on finite-scale laminate response. Results indicate that for the selected laminate configurations considered in this study, angle-ply laminates composed of aligned, non-functionalized carbon nanotube-reinforced lamina exhibit the greatest buckling resistance with 1% nanotube volume fraction of 450 nm uniformly-distributed carbon nanotubes. In addition, hybrid laminates were considered by varying either the volume fraction or nanotube length through-the-thickness of a quasi-isotropic laminate. The ratio of buckling load-to-nanotube weight percent for the hybrid laminates considered indicate the potential for increasing the buckling efficiency of nanotube-reinforced laminates by optimizing nanotube size and proportion with respect to laminate configuration

    A Summary of Oxidation-Reduction Potentials

    Get PDF
    A. ferric-ferrous electrode. B. mercuric-mercurous electrode. C. manganese dioxide electrodes

    Design, synthesis, and biological evaluation of an allosteric inhibitor of HSET that targets cancer cells with supernumerary centrosomes

    Get PDF
    Centrosomes associate with spindle poles; thus, the presence of two centrosomes promotes bipolar spindle assembly in normal cells. Cancer cells often contain supernumerary centrosomes, and to avoid multipolar mitosis and cell death, these are clustered into two poles by the microtubule motor protein HSET. We report the discovery of an allosteric inhibitor of HSET, CW069, which we designed using a methodology on an interface of chemistry and biology. Using this approach, we explored millions of compounds in silico and utilized convergent syntheses. Only compound CW069 showed marked activity against HSET in vitro. The inhibitor induced multipolar mitoses only in cells containing supernumerary centrosomes. CW069 therefore constitutes a valuable tool for probing HSET function and, by reducing the growth of cells containing supernumerary centrosomes, paves the way for new cancer therapeutics

    INDIGO : better geomagnetic observatories where we need them

    Get PDF
    The INDIGO project aims to improve the global coverage of digital observatories by deploying digital magnetometer systems in: i) Observatories where existing analog recording equipment is in need of upgrading. ii) Newly established digital observatories. iii) Existing digital observatories for the purpose of quality control and redundancy. In implementing the project and selecting suitable sites, special attention is paid to parts of the Earth devoid of magnetic observatories, increasing the reliability and long-term operation of existing observatories and cost-effective use of local resources. The Poster reviews the current status of the project. We examine the different steps and initiatives taken since the initiation of INDIGO in 2004 and assess their effectiveness in achieving progress towards our aims of improving global coverage and enhanced data quality
    • …
    corecore