19 research outputs found

    The collagen prolyl hydroxylases are bifunctional growth regulators in melanoma

    Get PDF
    Appropriate post-translational processing of collagen requires prolyl hydroxylation, catalyzed by the prolyl 3- (C-P3H) and prolyl 4- (C-P4H) hydroxylases is essential for normal cell function. Here we have investigated the expression, transcriptional regulation and function of the C-P3H and C-P4H families in melanoma. We show that the CP3H family exemplified by Leprel1 and Leprel2 are subject to methylation-dependent transcriptional silencing in primary and metastatic melanoma consistent with a tumour suppressor function. In contrast, although there is transcriptional silencing of P4HA3 in a sub-set of melanomas, the CP4H family members P4HA1, P4HA2 and P4HA3 are often over-expressed in melanoma, expression being prognostic of worse clinical outcomes. Consistent with tumour suppressor function, ectopic expression of Leprel1 and Leprel2 inhibits melanoma proliferation, whereas P4HA2 and P4HA3 increase proliferation and particularly invasiveness of melanoma cells. Pharmacological inhibition with multiple selective C-P4H inhibitors reduces proliferation and inhibits invasiveness of melanoma cells. Together, our data identify the C-P3H and C-P4H families as potentially important regulators of melanoma growth and invasiveness and suggest that selective inhibition of C-P4H is an attractive strategy to reduce the invasive properties of melanoma cells

    The Renin Angiotensin System (RAS) mediates bifunctional growth regulation in melanoma and is a novel target for therapeutic intervention

    Get PDF
    Despite emergence of new systemic therapies, metastatic melanoma remains a challenging and often fatal form of skin cancer. The renin–angiotensin system (RAS) is a major physiological regulatory pathway controlling salt–water equilibrium, intravascular volume and blood pressure. Biological effects of the RAS are mediated by the vasoactive hormone angiotensin II (AngII) via two receptor subtypes, AT1R (encoded by AGTR1) and AT2R (encoded by AGTR2). We report decreasing expression and increasing CpG island methylation of AGTR1 in metastatic versus primary melanoma and detection in serum of methylated genomic DNA from the AGTR1 CpG island in metastatic melanoma implying that AGTR1 encodes a tumour suppressor function in melanoma. Consistent with this hypothesis, antagonism of AT1R using losartan or shRNA-mediated knockdown in melanoma cell lines expressing AGTR1 resulted in acquisition of the ability to proliferate in serum-free conditions. Conversely, ectopic expression of AGTR1 in cell lines lacking endogenous expression inhibits proliferation irrespective of the presence of AngII implying a ligand-independent suppressor function for AT1R. Treatment of melanoma cell lines expressing endogenous AT2R with either AngII or the AT2R-selective agonist Y6AII induces proliferation in serum-free conditions whereas the AT2R-specific antagonists PD123319 and EMA401 inhibit melanoma growth and angiogenesis and potentiate inhibitors of BRAF and MEK in cells with BRAF V600 mutations. Our results demonstrate that the RAS has both oncogenic and tumour suppressor functions in melanoma. Pharmacological inhibition of AT2R may provide therapeutic opportunities in melanomas expressing this receptor and AGTR1 CpG island methylation in serum may serve as a novel biomarker of metastatic melanoma

    Deformation of Atomic p(+/-) Orbitals in Strong Elliptically Polarized Laser Fields: Ionization Time Drifts and Spatial Photoelectron Separation

    No full text
    We theoretically investigate the deformation of atomic p(+/-) orbitals driven by strong elliptically polarized (EP) laser fields and the role it plays in tunnel ionization. Our study reveals that different Stark effects induced by orthogonal components of the EP field give rise to subcycle rearrangement of the bound electron density, rendering the initial p(+) and p(-) orbitals deformed and polarized along distinctively tilted angles with respect to the polarization ellipse of the EP field. As a consequence, the instantaneous tunneling rates change such that for few-cycle EP laser pulses the bound electron initially counterrotating (corotating) with the electric field is most likely released before (after) the peak of the electric field. We demonstrate that with a sequential-pulse setup one can exploit this effect to spatially separate the photoelectrons detached from p(+) and p(-) orbitals, paving the way towards robust control of spin-resolved photoemission in laser-matter interactions

    Effects of a Multi-Ingredient Oral Supplement on Multiple Object Tracking, Reaction Time, and Reactive Agility

    No full text
    Background The demands of typical daily activities require a constant level of alertness and attention. Multi-ingredient, caffeine-containing supplements have been shown to improve measures of cognitive performance. As many of these supplements become readily available, efficacy of each should be evaluated. Therefore, the purpose of this study is to examine the effects of the 4D dietary supplement on cognition, reaction time, and reactive agility. Methods Seventeen healthy males (n = 8) and females (n = 9) between the ages of 18–40 years old (22.8 ± 2.9 years; 167.3 ± 9.6 cm; 65.4 ± 10.9 kg) participated in this double-blind, randomized crossover study. Participants completed three baseline reaction time assessments on the Dynavision and one baseline multiple object tracking assessment on the Neurotracker. Participants then consumed the oral multi-ingredient supplement containing 150 mg of caffeine or non-caffeinated placebo, mixed with 24 ounces of water, and rested for 45 minutes. Following the rest period, participants completed an additional three reaction time assessments and one multiple object tracking (MOT) assessment, as well as 6–12 trials of the Y-reactive agility test. Repeated measures ANOVAs were used to evaluate YRA performance and change values for Dynavision RT, Dynavision score, and MOT speed with either 4D dietary supplement or placebo. Results A significant time × supplement interaction was shown for MOT speed (p = .040, d = .543). Change scores in MOT speed were significantly different from zero following 4D (mean: 0.224 au; 95% confidence interval: 0.050 to 0.398 au) but not placebo supplementation (mean: −0.046 au; 95% confidence interval: −0.220 to 0.127 au). No time × supplement interaction was shown for Dynavision RT (p = .056, d = −.499) or Dynavision score (p = .093, d = .434). No differences were shown for YRA scores following supplementation for the right side (p = .241, d = −.295) or left side (p = .378, d = −.220). Conclusion The 4D dietary supplement appears to improve measures of cognition, specifically attention/spatial awareness, but not reaction time or reactive agility. Future research should examine the effects of this supplement with a larger, less heterogeneous sample and/or in conjunction with an exercise intervention

    Efficacy of arginine depletion by ADI-PEG20 in an intracranial model of GBM

    Get PDF
    Glioblastoma multiforme (GBM) remains a cancer with a poor prognosis and few effective therapeutic options. Successful medical management of GBM is limited by the restricted access of drugs to the central nervous system (CNS) caused by the blood brain barrier (BBB). We previously showed that a subset of GBM are arginine auxotrophic because of transcriptional silencing of ASS1 and/or ASL and are sensitive to pegylated arginine deiminase (ADI-PEG20). However, it is unknown whether depletion of arginine in peripheral blood in vivo has therapeutic activity against intracranial disease. In the present work, we describe the efficacy of ADI-PEG20 in an intracranial model of human GBM in which tumour growth and regression are assessed in real time by measurement of luciferase activity. Animals bearing intracranial human GBM tumours of varying ASS status were treated with ADI-PEG20 alone or in combination with temozolomide and monitored for tumour growth and regression. Monotherapy ADI-PEG20 significantly reduces the intracranial growth of ASS1 negative GBM and extends survival of mice carrying ASS1 negative GBM without obvious toxicity. The combination of ADI-PEG20 with temozolomide (TMZ) demonstrates enhanced effects in both ASS1 negative and ASS1 positive backgrounds.Our data provide proof of principle for a therapeutic strategy for GBM using peripheral blood arginine depletion that does not require BBB passage of drug and is well tolerated. The ability of ADI-PEG20 to cytoreduce GBM and enhance the effects of temozolomide argues strongly for its early clinical evaluation in the treatment of GBM

    The S100A4 protein signals through the ErbB4 receptor to promote neuronal survival.

    No full text
    Understanding the mechanisms of neurodegeneration is crucial for development of therapies to treat neurological disorders. S100 proteins are extensively expressed in the injured brain but S100's role and signalling in neural cells remain elusive. We recently demonstrated that the S100A4 protein protects neurons in brain injury and designed S100A4-derived peptides mimicking its beneficial effects. Here we show that neuroprotection by S100A4 involves the growth factor family receptor ErbB4 and its ligand Neuregulin 1 (NRG), key regulators of neuronal plasticity and implicated in multiple brain pathologies. The neuroprotective effect of S100A4 depends on ErbB4 expression and the ErbB4 signalling partners ErbB2/Akt, and is reduced by functional blockade of NRG/ErbB4 in cell models of neurodegeneration. We also detect binding of S100A4 with ErbB1 (EGFR) and ErbB3. S100A4-derived peptides interact with, and signal through ErbB, are neuroprotective in primary and immortalized dopaminergic neurons, and do not affect cell proliferation/motility - features which make them promising as potential neuroprotectants. Our data suggest that the S100- ErbB axis may be an important mechanism regulating neuronal survival and plasticit

    Efficacy of arginine depletion by ADI-PEG20 in an intracranial model of GBM

    No full text
    Glioblastoma multiforme (GBM) remains a cancer with a poor prognosis and few effective therapeutic options. Successful medical management of GBM is limited by the restricted access of drugs to the central nervous system (CNS) caused by the blood brain barrier (BBB). We previously showed that a subset of GBM are arginine auxotrophic because of transcriptional silencing of ASS1 and/or ASL and are sensitive to pegylated arginine deiminase (ADI-PEG20). However, it is unknown whether depletion of arginine in peripheral blood in vivo has therapeutic activity against intracranial disease. In the present work, we describe the efficacy of ADI-PEG20 in an intracranial model of human GBM in which tumour growth and regression are assessed in real time by measurement of luciferase activity. Animals bearing intracranial human GBM tumours of varying ASS status were treated with ADI-PEG20 alone or in combination with temozolomide and monitored for tumour growth and regression. Monotherapy ADI-PEG20 significantly reduces the intracranial growth of ASS1 negative GBM and extends survival of mice carrying ASS1 negative GBM without obvious toxicity. The combination of ADI-PEG20 with temozolomide (TMZ) demonstrates enhanced effects in both ASS1 negative and ASS1 positive backgrounds.Our data provide proof of principle for a therapeutic strategy for GBM using peripheral blood arginine depletion that does not require BBB passage of drug and is well tolerated. The ability of ADI-PEG20 to cytoreduce GBM and enhance the effects of temozolomide argues strongly for its early clinical evaluation in the treatment of GBM
    corecore