116 research outputs found

    Efficient epidemic multicast in heterogeneous networks

    Get PDF
    The scalability and resilience of epidemic multicast, also called probabilistic or gossip-based multicast, rests on its symmetry: Each participant node contributes the same share of bandwidth thus spreading the load and allowing for redundancy. On the other hand, the symmetry of gossiping means that it does not avoid nodes or links with less capacity. Unfortunately, one cannot naively avoid such symmetry without also endangering scalability and resilience. In this paper we point out how to break out of this dilemma, by lazily deferring message transmission according to a configurable policy. An experimental proof-of-concept illustrates the approach.Fundação para a CiĂȘncia e a Tecnologia (FCT) - Project “P-SON: Probabilistically Structured Overlay Networks” (POS C/EIA/60941/2004)

    Fault-tolerant aggregation by flow updating

    Get PDF
    Data aggregation plays an important role in the design of scalable systems, allowing the determination of meaningful system-wide properties to direct the execution of distributed applications. In the particular case of wireless sensor networks, data collection is often only practicable if aggregation is performed. Several aggregation algorithms have been proposed in the last few years, exhibiting different properties in terms of accuracy, speed and communication tradeoffs. Nonetheless, existing approaches are found lacking in terms of fault tolerance. In this paper, we introduce a novel fault-tolerant averaging based data aggregation algorithm. It tolerates substantial message loss (link failures), while competing algorithms in the same class can be affected by a single lost message. The algorithm is based on manipulating flows (in the graph theoretical sense), that are updated using idempotent messages, providing it with unique robustness capabilities. Furthermore, evaluation results obtained by comparing it with other averaging approaches have revealed that it outperforms them in terms of time and message complexity

    Transgenic Rescue of the LARGEmyd Mouse: A LARGE Therapeutic Window?

    Get PDF
    LARGE is a glycosyltransferase involved in glycosylation of α-dystroglycan (α-DG). Absence of this protein in the LARGEmyd mouse results in α-DG hypoglycosylation, and is associated with central nervous system abnormalities and progressive muscular dystrophy. Up-regulation of LARGE has previously been proposed as a therapy for the secondary dystroglycanopathies: overexpression in cells compensates for defects in multiple dystroglycanopathy genes. Counterintuitively, LARGE overexpression in an FKRP-deficient mouse exacerbates pathology, suggesting that modulation of α-DG glycosylation requires further investigation. Here we demonstrate that transgenic expression of human LARGE (LARGE-LV5) in the LARGEmyd mouse restores α-DG glycosylation (with marked hyperglycosylation in muscle) and that this corrects both the muscle pathology and brain architecture. By quantitative analyses of LARGE transcripts we also here show that levels of transgenic and endogenous LARGE in the brains of transgenic animals are comparable, but that the transgene is markedly overexpressed in heart and particularly skeletal muscle (20–100 fold over endogenous). Our data suggest LARGE overexpression may only be deleterious under a forced regenerative context, such as that resulting from a reduction in FKRP: in the absence of such a defect we show that systemic expression of LARGE can indeed act therapeutically, and that even dramatic LARGE overexpression is well-tolerated in heart and skeletal muscle. Moreover, correction of LARGEmyd brain pathology with only moderate, near-physiological LARGE expression suggests a generous therapeutic window

    A Brief Overview of the NEBULA Future Internet Architecture

    Get PDF
    NEBULA is a proposal for a Future Internet Architecture. It is based on the assumptions that: (1) cloud computing will comprise an increasing fraction of the application workload offered to an Internet, and (2) that access to cloud computing resources will demand new architectural features from a network. Features that we have identified include dependability, security, flexibility and extensibility, the entirety of which constitute resilience.NEBULA provides resilient networking services using ultrareliable routers, an extensible control plane and use of multiple paths upon which arbitrary policies may be enforced. We report on a prototype system, Zodiac, that incorporates these latter two features

    Distributed Operating Systems

    Get PDF
    Distributed operating systems have many aspects in common with centralized ones, but they also differ in certain ways. This paper is intended as an introduction to distributed operating systems, and especially to current university research about them. After a discussion of what constitutes a distributed operating system and how it is distinguished from a computer network, various key design issues are discussed. Then several examples of current research projects are examined in some detail, namely, the Cambridge Distributed Computing System, Amoeba, V, and Eden. © 1985, ACM. All rights reserved
    • 

    corecore