249 research outputs found

    Detection of low energy single ion impacts in micron scale transistors at room temperature

    Get PDF
    We report the detection of single ion impacts through monitoring of changes in the source-drain currents of field effect transistors (FET) at room temperature. Implant apertures are formed in the interlayer dielectrics and gate electrodes of planar, micro-scale FETs by electron beam assisted etching. FET currents increase due to the generation of positively charged defects in gate oxides when ions (121Sb12+, 14+, Xe6+; 50 to 70 keV) impinge into channel regions. Implant damage is repaired by rapid thermal annealing, enabling iterative cycles of device doping and electrical characterization for development of single atom devices and studies of dopant fluctuation effects

    Experiments with planar inductive ion source meant for creation ofH+ Beams

    Get PDF
    In this article the effect of different engineering parameters of an rf-driven ion sources with external spiral antenna and quartz disk rf-window are studied. Paper consists of three main topics: The effect of source geometry on the operation gas pressure, the effect of source materials and magnetic confinement on extracted current density and ion species and the effect of different antenna geometries on the extracted current density. The operation gas pressure as a function of the plasma chamber diameter, was studied. This was done with three cylindrical plasma chambers with different inner diameters. The chamber materials were studied using two materials, aluminum and alumina (AlO{sub 2}). The removable 14 magnet multicusp confinement arrangement enabled us to compare the effects of the two wall materials with and without the magnetic confinement. Highest proton fraction of {approx} 8% at 2000 W of rf-power and at pressure of 1.3 Pa was measured using AlO{sub 2} plasma chamber and no multicusp confinement. For all the compared ion sources at 1000W of rf-power, source with multicusp confinement and AlO2 plasma chamber yields highest current density of 82.7 mA/cm{sup 2} at operation pressure of 4 Pa. From the same source highest measured current density of 143 mA/cm{sup 2} at 1.3 Pa and 2200W of rf-power was achieved. Multicusp confinement increased the maximum extracted current up to factor of two. Plasma production with different antenna geometries was also studied. Antenna tests were performed using same source geometry as in source material study with AlO{sub 2} plasma chamber and multicusp confinement. The highest current density was achieved with 4.5 loop solenoid antenna with 6 cm diameter. Slightly lower current density with lower pressure was achieved using tightly wound 3 loop spiral antenna with 3.3 cm ID and 6 cm OD

    First direct kinetic measurement of i -C4H5 (CH2CHCCH2) + O-2 reaction : Toward quantitative understanding of aromatic ring formation chemistry

    Get PDF
    The kinetics of the i -C 4 H 5 (buta-1,3-dien-2-yl) radical reaction with molecular oxygen has been measured over a wide temperature range (275-852 K) at low pressures (0.8-3 Torr) in direct, time-resolved experiments. The measurements were performed using a laminar flow reactor coupled to photoionization mass spectrometer (PIMS), and laser photolysis of either chloroprene (2-chlorobuta-1,3-diene) or isoprene was used to produce the resonantly stabilized i -C 4 H 5 radical. Under the experimental conditions, the measured bimolecular rate coefficient of i -C 4 H 5 + O 2 reaction is independent of bath gas density and exhibits weak, negative temperature dependency, and can be described by the expression k 3 = (1.45 +/- 0.05) & times; 10 & minus;12 & times; ( T /298 K) & minus;(0.13 +/- 0.05) cm 3 s & minus;1 . The measured bimolecular rate coefficient is surprisingly fast for a resonantly stabilized radical. Under combustion conditions, the reactions of i -C 4 H 5 radical with ethylene and acetylene are believed to play an important role in forming the first aromatic ring. However, the current measurements show that i C 4 H 5 + O 2 reaction is significantly faster under combustion conditions than previous estimations suggest and, consequently, inhibits the soot forming propensity of i -C 4 H 5 radicals. The bimolecular rate coefficient estimates used for the i -C 4 H 5 + O 2 reaction in recent combustion simulations show significant variation and are up to two orders of magnitude slower than the current, measured value. All estimates, in contrast to our measurements, predict a positive temperature dependency. The observed products for the i -C 4 H 5 + O 2 reaction were formaldehyde and ketene. This is in agreement with the one theoretical study available for i C 4 H 5 + O 2 reaction, which predicts the main bimolecular product channels to be H 2 CO + C 2 H 3 + CO and H 2 CCO + CH 2 CHO. (c) 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.Peer reviewe

    Histologically Verified Biliary Invasion was Associated with Impaired Liver Recurrence-Free Survival in Resected Colorectal Cancer Liver Metastases

    Get PDF
    Background and Aims: The impact of biliary invasion on recurrence and survival, after resection of colorectal cancer liver metastases, is not well known as publications are limited to small patient series. The aim was to investigate if biliary invasion in liver resected patients associated with liver relapses and recurrence-free survival. Secondary endpoints included association with other prognostic factors, disease-free survival and overall survival. Materials and Methods: All patients with histologically verified biliary invasion (n = 31, 9%) were identified among 344 patients with liver resection between January 2009 and March 2015. Controls (n = 78) were selected from the same time period and matched for, among others, size and number of colorectal cancer liver metastasis. Results: Median liver recurrence-free survival was significantly shorter in patients with biliary invasion than in controls (15.3 months versus not reached; p = 0.031) and more relapses were noted in the liver (61.3% versus 33.3%; p = 0.010), respectively. In univariate analyses for liver recurrence-free survival, biliary invasion was the only significant prognostic factor; p = 0.034. There were no statistical differences in disease-free and overall survival between the groups. Conclusion: Biliary invasion was associated with higher liver recurrence rates and shorter liver recurrence-free survival in patients with resected colorectal cancer liver metastasis.Peer reviewe

    Equilibrium hydrostatic equation and Newtonian limit of the singular f(R) gravity

    Get PDF
    We derive the equilibrium hydrostatic equation of a spherical star for any gravitational Lagrangian density of the form L=gf(R)L=\sqrt{-g}f(R). The Palatini variational principle for the Helmholtz Lagrangian in the Einstein gauge is used to obtain the field equations in this gauge. The equilibrium hydrostatic equation is obtained and is used to study the Newtonian limit for f(R)=Ra23Rf(R)=R-\frac{a^{2}}{3R}. The same procedure is carried out for the more generally case f(R)=R1n+2an+1Rnf(R)=R-\frac{1}{n+2}\frac{a^{n+1}}{R^{n}} giving a good Newtonian limit.Comment: Revised version, to appear in Classical and Quantum Gravity
    corecore