7 research outputs found

    A 3D Model of the Membrane Protein Complex Formed by the White Spot Syndrome Virus Structural Proteins

    Get PDF
    Outbreaks of white spot disease have had a large negative economic impact on cultured shrimp worldwide. However, the pathogenesis of the causative virus, WSSV (whit spot syndrome virus), is not yet well understood. WSSV is a large enveloped virus. The WSSV virion has three structural layers surrounding its core DNA: an outer envelope, a tegument and a nucleocapsid. In this study, we investigated the protein-protein interactions of the major WSSV structural proteins, including several envelope and tegument proteins that are known to be involved in the infection process.In the present report, we used coimmunoprecipitation and yeast two-hybrid assays to elucidate and/or confirm all the interactions that occur among the WSSV structural (envelope and tegument) proteins VP51A, VP19, VP24, VP26 and VP28. We found that VP51A interacted directly not only with VP26 but also with VP19 and VP24. VP51A, VP19 and VP24 were also shown to have an affinity for self-interaction. Chemical cross-linking assays showed that these three self-interacting proteins could occur as dimers.From our present results in conjunction with other previously established interactions we construct a 3D model in which VP24 acts as a core protein that directly associates with VP26, VP28, VP38A, VP51A and WSV010 to form a membrane-associated protein complex. VP19 and VP37 are attached to this complex via association with VP51A and VP28, respectively. Through the VP26-VP51C interaction this envelope complex is anchored to the nucleocapsid, which is made of layers of rings formed by VP664. A 3D model of the nucleocapsid and the surrounding outer membrane is presented

    Efficacy of Recombinant Herpes Simplex Virus 1 Glycoprotein D Candidate Vaccines in Mice

    No full text
    To compare the immunogenity of the herpes simplex virus 1 (HSV-1/HHV-1) recombinant glycoprotein D (gD1), as a potential protective vaccine, Balb/c mice were immunized with either gD1/313 (the ectodomain of the gD1 fusion protein consisting of 313 amino acid residues), or the plasmid pcDNA3.1-gD (coding for a full length gD1 protein, FLgD1). A live attenuated HSV-l (deleted in the gE gene), and a HSV-1 (strain HSZP)-infected cell extract served as positive controls, and three non-structural recombinant HSV-1 fusion proteins (ICP27, UL9/OBP and thymidine kinase - TK) were used as presumed non-protective (negative) controls. Protection tests showed that the LD 50 value of the challenging infectious virus increased 90-fold in mice immunized with ICP27, but remained unchanged in other control mice immunized with TK and OBP polypeptides. A significant protection (the LD 50 value of challenging virus increased 800-fold) was noted following immunization with gD1/313, while immunization with the gE-del virus and/or the gD1 DNA vaccine resulted in a more than 4,000-fold increase of the challenging virus dose killing 50% of the animals. Using ELISA, elevated antibody titers were detected following immunizations with gD1/313, gE-del virus, and/or HSV-1-infected-cell extract. In addition, all of the three non-structural proteins elicited a good humoral response (with titres ranging from 1:16,000 to 1:128,000). The lowest IgG response (1:8,000) was noted after immunization with the gD1 DNA vaccine. Peripheral blood leukocytes (PBLs) as well as splenocytes from mice immunized with gD1/313, gE-del virus, and gD1-plasmid responded in lymphocyte transformation test (LTT) to the presence of purified gD1/313 antigen. For PBLs, the most significant stimulation of thymidine incorporation was registered at a gD1/313 concentration of 5 µg/100 µl, while the splenocytes from DNA vaccine-immunized mice responded already at a concentration of 1 µg/100 µl

    Horizontal Gene Transfers with or without Cell Fusions in All Categories of the Living Matter

    No full text
    corecore