918 research outputs found
Weighted Radon transforms for which the Chang approximate inversion formula is precise
We describe all weighted Radon transforms on the plane for which the Chang
approximate inversion formula is precise. Some subsequent results, including
the Cormack type inversion for these transforms, are also given
Optimisation of a Hybrid Wall for Solar Utilisation in Agriculture
Rosana G. Moreira, Editor-in-Chief; Texas A&M UniversityThis is a Technical article from International Commission of Agricultural Engineering (CIGR, Commission Internationale du Genie Rural) E-Journal Volume 2 (2000): J. Radon, W. Bieda. Optimisation of a Hybrid Wall for Solar Utilisation in Agriculture
The flip-graph of the 4-dimensional cube is connected
Flip-graph connectedness is established here for the vertex set of the
4-dimensional cube. It is found as a consequence that this vertex set has 92
487 256 triangulations, partitioned into 247 451 symmetry classes.Comment: 20 pages, 3 figures, revised proofs and notation
Twistor Theory and Differential Equations
This is an elementary and self--contained review of twistor theory as a
geometric tool for solving non-linear differential equations. Solutions to
soliton equations like KdV, Tzitzeica, integrable chiral model, BPS monopole or
Sine-Gordon arise from holomorphic vector bundles over T\CP^1. A different
framework is provided for the dispersionless analogues of soliton equations,
like dispersionless KP or Toda system in 2+1 dimensions. Their
solutions correspond to deformations of (parts of) T\CP^1, and ultimately to
Einstein--Weyl curved geometries generalising the flat Minkowski space. A
number of exercises is included and the necessary facts about vector bundles
over the Riemann sphere are summarised in the Appendix.Comment: 23 Pages, 9 Figure
MinMax Radon Barcodes for Medical Image Retrieval
Content-based medical image retrieval can support diagnostic decisions by
clinical experts. Examining similar images may provide clues to the expert to
remove uncertainties in his/her final diagnosis. Beyond conventional feature
descriptors, binary features in different ways have been recently proposed to
encode the image content. A recent proposal is "Radon barcodes" that employ
binarized Radon projections to tag/annotate medical images with content-based
binary vectors, called barcodes. In this paper, MinMax Radon barcodes are
introduced which are superior to "local thresholding" scheme suggested in the
literature. Using IRMA dataset with 14,410 x-ray images from 193 different
classes, the advantage of using MinMax Radon barcodes over \emph{thresholded}
Radon barcodes are demonstrated. The retrieval error for direct search drops by
more than 15\%. As well, SURF, as a well-established non-binary approach, and
BRISK, as a recent binary method are examined to compare their results with
MinMax Radon barcodes when retrieving images from IRMA dataset. The results
demonstrate that MinMax Radon barcodes are faster and more accurate when
applied on IRMA images.Comment: To appear in proceedings of the 12th International Symposium on
Visual Computing, December 12-14, 2016, Las Vegas, Nevada, US
An international prospective general population-based study of respiratory work disability
Background: Previous cross-sectional studies have shown that job change due to breathing problems at the workplace (respiratory work disability) is common among adults of working age. That research indicated that occupational exposure to gases, dust and fumes was associated with job change due to breathing problems, although causal inferences have been tempered by the cross-sectional nature of previously available data. There is a need for general population-based prospective studies to assess the incidence of respiratory work disability and to delineate better the roles of potential predictors of respiratory work disability.Methods: A prospective general population cohort study was performed in 25 centres in 11 European countries and one centre in the USA. A longitudinal analysis was undertaken of the European Community Respiratory Health Survey including all participants employed at any point since the baseline survey, 6659 subjects randomly sampled and 779 subjects comprising all subjects reporting physician-diagnosed asthma. The main outcome measure was new-onset respiratory work disability, defined as a reported job change during follow-up attributed to breathing problems. Exposure to dusts (biological or mineral), gases or fumes during follow-up was recorded using a job-exposure matrix. Cox proportional hazard regression modelling was used to analyse such exposure as a predictor of time until job change due to breathing problems.Results: The incidence rate of respiratory work disability was 1.2/1000 person-years of observation in the random sample (95% CI 1.0 to 1.5) and 5.7/1000 person-years in the asthma cohort (95% CI 4.1 to 7.8). In the random population sample, as well as in the asthma cohort, high occupational exposure to biological dust, mineral dust or gases or fumes predicted increased risk of respiratory work disability. In the random sample, sex was not associated with increased risk of work disability while, in the asthma cohort, female sex was associated with an increased disability risk (hazard ratio 2.8, 95% CI 1.3 to 5.9).Conclusions: Respiratory work disability is common overall. It is associated with workplace exposures that could be controlled through preventive measures
Tomographic approach to resolving the distribution of LISA Galactic binaries
The space based gravitational wave detector LISA is expected to observe a
large population of Galactic white dwarf binaries whose collective signal is
likely to dominate instrumental noise at observational frequencies in the range
10^{-4} to 10^{-3} Hz. The motion of LISA modulates the signal of each binary
in both frequency and amplitude, the exact modulation depending on the source
direction and frequency. Starting with the observed response of one LISA
interferometer and assuming only doppler modulation due to the orbital motion
of LISA, we show how the distribution of the entire binary population in
frequency and sky position can be reconstructed using a tomographic approach.
The method is linear and the reconstruction of a delta function distribution,
corresponding to an isolated binary, yields a point spread function (psf). An
arbitrary distribution and its reconstruction are related via smoothing with
this psf. Exploratory results are reported demonstrating the recovery of binary
sources, in the presence of white Gaussian noise.Comment: 13 Pages and 9 figures high resolution figures can be obtains from
http://www.phys.utb.edu/~rajesh/lisa_tomography.pd
Generalized quantum tomographic maps
Some non-linear generalizations of classical Radon tomography were recently
introduced by M. Asorey et al [Phys. Rev. A 77, 042115 (2008), where the
straight lines of the standard Radon map are replaced by quadratic curves
(ellipses, hyperbolas, circles) or quadratic surfaces (ellipsoids,
hyperboloids, spheres). We consider here the quantum version of this novel
non-linear approach and obtain, by systematic use of the Weyl map, a
tomographic encoding approach to quantum states. Non-linear quantum tomograms
admit a simple formulation within the framework of the star-product
quantization scheme and the reconstruction formulae of the density operators
are explicitly given in a closed form, with an explicit construction of
quantizers and dequantizers. The role of symmetry groups behind the generalized
tomographic maps is analyzed in some detail. We also introduce new
generalizations of the standard singular dequantizers of the symplectic
tomographic schemes, where the Dirac delta-distributions of operator-valued
arguments are replaced by smooth window functions, giving rise to the new
concept of "thick" quantum tomography. Applications for quantum state
measurements of photons and matter waves are discussed.Comment: 8 page
- …
