research

Twistor Theory and Differential Equations

Abstract

This is an elementary and self--contained review of twistor theory as a geometric tool for solving non-linear differential equations. Solutions to soliton equations like KdV, Tzitzeica, integrable chiral model, BPS monopole or Sine-Gordon arise from holomorphic vector bundles over T\CP^1. A different framework is provided for the dispersionless analogues of soliton equations, like dispersionless KP or SU(∞)SU(\infty) Toda system in 2+1 dimensions. Their solutions correspond to deformations of (parts of) T\CP^1, and ultimately to Einstein--Weyl curved geometries generalising the flat Minkowski space. A number of exercises is included and the necessary facts about vector bundles over the Riemann sphere are summarised in the Appendix.Comment: 23 Pages, 9 Figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019