1,854 research outputs found
Tourism's Impact on Long-Run Mexican Economic Growth
Tourism is one of the most important factors in the productivity of Mexican economy with significant multiplier effects on economic activity. This paper investigates possible causal relationships among tourism expenditure, real exchange rate and economic growth by using quarterly data. Johansen cointegration analysis shows the existence of one cointegrated vector among real GDP, tourism expenditure and real exchange rate where the corresponding elasticities are positive. The tourism-led growth hypothesis is confirmed through cointegration and causality testing. Tourism expenditure and Real Exchange Rate (RER) are weakly exogenous to real GDP. A modified version of the Granger Causality test shows that causality goes unidirectionally from tourism expenditure and RER to real GDP. Impulse response analysis shows that a shock in tourism expenditure produces a short fall and then a positive effect on growth.economic growth Johansen cointegration test Granger causality tourism-led growth hypothesis.
Multi-domain service orchestration over networks and clouds: a unified approach
End-to-end service delivery often includes transparently inserted Network Functions (NFs) in the path. Flexible service chaining will require dynamic instantiation of both NFs and traffic forwarding overlays. Virtualization techniques in compute and networking, like cloud and Software Defined Networking (SDN), promise such flexibility for service providers. However, patching together existing cloud and network control mechanisms necessarily puts one over the above, e.g., OpenDaylight under an OpenStack controller. We designed and implemented a joint cloud and network resource virtualization and programming API. In this demonstration, we show that our abstraction is capable for flexible service chaining control over any technology domain
Gestão financeira e contábil para projeto de pesquisa em agricultura orgânica da Embrapa Agrobiologia
Análisis de cointegración y valores umbrales entre la inflación y el crecimiento económico en México: 1970-2007
The aim of this paper is to estimate long run relationships and threshold effects between inflation and economic growth in Mexico. We show the existence of such relationship in a cointegrated vector on Economic Growth (log of real GDP) and Inflation rate finding a corresponding elasticity significantly negative. Moreover, the causal relationship between these two series is studied using a more robust Granger causality test, without finding any directional causality between them. The estimated threshold model suggests 9 percent as the threshold level (i.e., structural break point) of inflation above which inflation significantly slows the Mexican economic growth.cointegration, economic growth, inflation, structural break
Free Thermal Convection Driven by Nonlocal Effects
We report and explain a convective phenomenon observed in molecular dynamics
simulations that cannot be classified either as a hydrodynamics instability nor
as a macroscopically forced convection. Two complementary arguments show that
the velocity field by a thermalizing wall is proportional to the ratio between
the heat flux and the pressure. This prediction is quantitatively corroborated
by our simulations.Comment: RevTex, figures is eps, submited for publicatio
Going beyond 20 μm-sized channels for studying red blood cell phase separation in microfluidic bifurcations
Despite the development of microfluidics, experimental challenges are considerable for achieving a quantitative study of phase separation, i.e., the non-proportional dis- tribution of Red Blood Cells (RBCs) and suspending fluid, in microfluidic bifurca- tions with channels smaller than 20lm. Yet, a basic understanding of phase separation in such small vessels is needed for understanding the coupling between microvascular network architecture and dynamics at larger scale. Here, we present the experimental methodologies and measurement techniques developed for that pur- pose for RBC concentrations (tube hematocrits) ranging between 2% and 20%. The maximal RBC velocity profile is directly measured by a temporal cross-correlation technique which enables to capture the RBC slip velocity at walls with high resolu- tion, highlighting two different regimes (flat and more blunted ones) as a function of RBC confinement. The tube hematocrit is independently measured by a photometric technique. The RBC and suspending fluid flow rates are then deduced assuming the velocity profile of a Newtonian fluid with no slip at walls for the latter. The accuracy of this combination of techniques is demonstrated by comparison with reference measurements and verification of RBC and suspending fluid mass conservation at individual bifurcations. The present methodologies are much more accurate, with less than 15% relative errors, than the ones used in previous in vivo experiments. Their potential for studying steady state phase separation is demonstrated, highlight- ing an unexpected decrease of phase separation with increasing hematocrit in symmetrical, but not asymmetrical, bifurcations and providing new reference data in regimes where in vitro results were previously lacking. Published by AIP Publishin
Time resolved particle dynamics in granular convection
We present an experimental study of the movement of individual particles in a
layer of vertically shaken granular material. High-speed imaging allows us to
investigate the motion of beads within one vibration period. This motion
consists mainly of vertical jumps, and a global ordered drift. The analysis of
the system movement as a whole reveals that the observed bifurcation in the
flight time is not adequately described by the Inelastic Bouncing Ball Model.
Near the bifurcation point, friction plays and important role, and the branches
of the bifurcation do not diverge as the control parameter is increased. We
quantify the friction of the beads against the walls, showing that this
interaction is the underlying mechanism responsible for the dynamics of the
flow observed near the lateral wall
Extended hydrodynamics from Enskog's equation for a two-dimensional system general formalism
Balance equations are derived from Enskog's kinetic equation for a
two-dimensional system of hard disks using Grad's moment expansion method. This
set of equations constitute an extended hydrodynamics for moderately dense
bi-dimensional fluids. The set of independent hydrodynamic fields in the
present formulations are: density, velocity, temperature {\em and
also}--following Grad's original idea--the symmetric and traceless pressure
tensor and the heat flux vector . An approximation
scheme similar in spirit to one made by Grad in his original work is made. Once
the hydrodynamics is derived it is used to discuss the nature of a simple
one-dimensional heat conduction problem. It is shown that, not too far from
equilibrium, the nonequilibrium pressure in this case only depends on the
density, temperature and heat flux vector.Comment: :9 pages, 1 figure, This will appear in J. Stat. Phys. with minor
corrections and corresponds to Ref[9] of cond-mat/050710
Designing a videoconference system for active networks
Active networks are receiving increasing attention due to their promises of great flexibility in tailoring services to applications. This capability stems from the exploitation of network devices whose behavior can be changed dynamically by applications, possibly using technologies and architectures originally conceived for mobile code systems. Notwithstanding the promises of active networks, real-world applications that clearly benefit by them are still missing. In this work we describe the design of a videoconference system conceived expressly for operation over active networks. The goal of this activity is to pinpoint the benefits that mobile code and active networks bring in this application domain and to provide insights for the exploitation of these concepts in other application domain
- …
