55,998 research outputs found

    Exciton and biexciton energies in bilayer systems

    Get PDF
    We report calculations of the energies of excitons and biexcitons in ideal two-dimensional bilayer systems within the effective-mass approximation with isotropic electron and hole masses. The exciton energies are obtained by a simple numerical integration technique, while the biexciton energies are obtained from diffusion quantum Monte Carlo calculations. The exciton binding energy decays as the inverse of the separation of the layers, while the binding energy of the biexciton with respect to dissociation into two separate excitons decays exponentially

    Parton and Hadron Correlations in Jets

    Full text link
    Correlation between shower partons is first studied in high pTp_T jets. Then in the framework of parton recombination the correlation between pions in heavy-ion collisions is investigated. Since thermal partons play very different roles in central and peripheral collisions, it is found that the correlation functions of the produced hadrons behave very differently at different centralities, especially at intermediate pTp_T. The correlation function that can best exhibit the distinctive features is suggested. There is not a great deal of overlap between what we can calculate and what has been measured. Nevertheless, some aspects of our results compare favorably with experimental data.Comment: 28 pages in Latex + 13 figures. This is a revised version with extended discussions added without quantitative changes in the result

    Achieving Effective Innovation Based On TRIZ Technological Evolution

    Get PDF
    Organised by: Cranfield UniversityThis paper outlines the conception of effective innovation and discusses the method to achieve it. Effective Innovation is constrained on the path of technological evolution so that the corresponding path must be detected before conceptual design of the product. The process of products technological evolution is a technical developing process that the products approach to Ideal Final Result (IFR). During the process, the sustaining innovation and disruptive innovation carry on alternately. By researching and forecasting potential techniques using TRIZ technological evolution theory, the effective innovation can be achieved finally.Mori Seiki – The Machine Tool Compan

    Evolutionary L∞ identification and model reduction for robust control

    Get PDF
    An evolutionary approach for modern robust control oriented system identification and model reduction in the frequency domain is proposed. The technique provides both an optimized nominal model and a 'worst-case' additive or multiplicative uncertainty bounding function which is compatible with robust control design methodologies. In addition, the evolutionary approach is applicable to both continuous- and discrete-time systems without the need for linear parametrization or a confined problem domain for deterministic convex optimization. The proposed method is validated against a laboratory multiple-input multiple-output (MIMO) test rig and benchmark problems, which show a higher fitting accuracy and provides a tighter L�¢���� error bound than existing methods in the literature do

    A heterotic sigma model with novel target geometry

    Full text link
    We construct a (1,2) heterotic sigma model whose target space geometry consists of a transitive Lie algebroid with complex structure on a Kaehler manifold. We show that, under certain geometrical and topological conditions, there are two distinguished topological half--twists of the heterotic sigma model leading to A and B type half--topological models. Each of these models is characterized by the usual topological BRST operator, stemming from the heterotic (0,2) supersymmetry, and a second BRST operator anticommuting with the former, originating from the (1,0) supersymmetry. These BRST operators combined in a certain way provide each half--topological model with two inequivalent BRST structures and, correspondingly, two distinct perturbative chiral algebras and chiral rings. The latter are studied in detail and characterized geometrically in terms of Lie algebroid cohomology in the quasiclassical limit.Comment: 83 pages, no figures, 2 references adde

    Detection of zeptojoule microwave pulses using electrothermal feedback in proximity-induced Josephson junctions

    Full text link
    We experimentally investigate and utilize electrothermal feedback in a microwave nanobolometer based on a normal-metal (\mbox{Au}_{x}\mbox{Pd}_{1-x}) nanowire with proximity-induced superconductivity. The feedback couples the temperature and the electrical degrees of freedom in the nanowire, which both absorbs the incoming microwave radiation, and transduces the temperature change into a radio-frequency electrical signal. We tune the feedback in situ and access both positive and negative feedback regimes with rich nonlinear dynamics. In particular, strong positive feedback leads to the emergence of two metastable electron temperature states in the millikelvin range. We use these states for efficient threshold detection of coherent 8.4 GHz microwave pulses containing approximately 200 photons on average, corresponding to 1.1 \mbox{ zJ} \approx 7.0 \mbox{ meV} of energy
    corecore