3,528 research outputs found

    Development and fabrication of an advanced liquid cooling garment

    Get PDF
    The elastomeric film fin/tube concept which was developed is a composite of polyurethane film, fine expanded silver mesh, a serpentine pattern polyurethane transport tubing and an integral comfort liner, all bonded via adhesive application and vacuum-bagged for final cure. As demonstrated by thermal analysis, the composite garment material is capable of removing a 293 watt (1000 BTU/hr) metabolic load through a head and torso cooling area of .46 sq m (5 sq ft) with tube spacing of slightly under one inch. A total of 60 test elements, each .15m x .15m (6 in. x 6 in.) were fabricated in support of the liquid cooling garment concept development. In parallel with the fabrication of these elements a continuing series of laboratory tests to support the fabrication techniques was carried out. The elements and supporting tests are described

    Decentralized Constraint Satisfaction

    Get PDF
    We show that several important resource allocation problems in wireless networks fit within the common framework of Constraint Satisfaction Problems (CSPs). Inspired by the requirements of these applications, where variables are located at distinct network devices that may not be able to communicate but may interfere, we define natural criteria that a CSP solver must possess in order to be practical. We term these algorithms decentralized CSP solvers. The best known CSP solvers were designed for centralized problems and do not meet these criteria. We introduce a stochastic decentralized CSP solver and prove that it will find a solution in almost surely finite time, should one exist, also showing it has many practically desirable properties. We benchmark the algorithm's performance on a well-studied class of CSPs, random k-SAT, illustrating that the time the algorithm takes to find a satisfying assignment is competitive with stochastic centralized solvers on problems with order a thousand variables despite its decentralized nature. We demonstrate the solver's practical utility for the problems that motivated its introduction by using it to find a non-interfering channel allocation for a network formed from data from downtown Manhattan

    The influence of free-stream turbulence on separation of turbulent boundary layers in incompressible, two-dimensional flow

    Get PDF
    Experiments were conducted to determine if free-stream turbulence scale affects separation of turbulent boundary layers. In consideration of possible interrelation between scale and intensity of turbulence, the latter characteristic also was varied and its role was evaluated. Flow over a 2-dimensional airfoil in a subsonic wind tunnel was studied with the aid of hot-wire anemometry, liquid-film flow visualization, a Preston tube, and static pressure measurements. Profiles of velocity, relative turbulence intensity, and integral scale in the boundary layer were measured. Detachment boundary was determined for various angles of attack and free-stream turbulence. The free-stream turbulence intensity and scale were found to spread into the entire turbulent boundary layer, but the effect decreased as the airfoil surface was approached. When the changes in stream turbulence were such that the boundary layer velocity profiles were unchanged, detachment location was not significantly affected by the variations of intensity and scale. Pressure distribution remained the key factor in determining detachment location

    Modelling 802.11 Wireless Links

    Get PDF
    Analysis of the 802.11 CSMA/CA mechanism has received considerable attention recently. Bianchi [3] presents an analytic model under a saturated traffic assumption. Bianchi’s model is accurate, but typical network conditions are nonsaturated heterogenous. We present an extension of his model to a non-saturated environment. The model’s predictions, validated against simulation, accurately capture many interesting features of non-saturated operation. For example, the model predicts that peak throughput occurs prior to saturation. Our model also allows stations to have different traffic arrival rates, enabling us to address the question of fairness between competing flows

    Modelling 802.11 Wireless Links

    Get PDF
    Analysis of the 802.11 CSMA/CA mechanism has received considerable attention recently. Bianchi [3] presents an analytic model under a saturated traffic assumption. Bianchi’s model is accurate, but typical network conditions are nonsaturated heterogenous. We present an extension of his model to a non-saturated environment. The model’s predictions, validated against simulation, accurately capture many interesting features of non-saturated operation. For example, the model predicts that peak throughput occurs prior to saturation. Our model also allows stations to have different traffic arrival rates, enabling us to address the question of fairness between competing flows

    Solution to the twin image problem in holography

    Get PDF
    While the invention of holography by Dennis Gabor truly constitutes an ingenious concept, it has ever since been troubled by the so called twin image problem limiting the information that can be obtained from a holographic record. Due to symmetry reasons there are always two images appearing in the reconstruction process. Thus, the reconstructed object is obscured by its unwanted out of focus twin image. Especially for emission electron as well as for x- and gamma-ray holography, where the source-object distances are small, the reconstructed images of atoms are very close to their twin images from which they can hardly be distinguished. In some particular instances only, experimental efforts could remove the twin images. More recently, numerical methods to diminish the effect of the twin image have been proposed but are limited to purely absorbing objects failing to account for phase shifts caused by the object. Here we show a universal method to reconstruct a hologram completely free of twin images disturbance while no assumptions about the object need to be imposed. Both, amplitude and true phase distributions are retrieved without distortion

    Investigating the validity of IEEE 802.11 MAC modeling hypotheses

    Get PDF
    As WLANs employing IEEE 802.11 have become pervasive, many analytic models for predicting their performance have been developed in recent years. Due to the complicated nature of the 802.11 MAC operation, approximations must be made to enable tractable mathematical models. In this article, through simulation we investigate the veracity of the approximations shared by many models that have been developed starting with the fundamental hypotheses in Bianchipsilas (1998 and 2000) seminal papers. We find that even for small numbers of station these assumptions that hold true for saturated stations (those that always have a packet to send) and for unsaturated stations with small buffers. However, despite their widespread adoption, we find that the commonly adopted assumptions that are used to incorporate station buffers are not appropriate. This raises questions about the predictive power of models based on these hypotheses

    Stress corrosion in titanium alloys and other metallic materials

    Get PDF
    Multiple physical and chemical techniques including mass spectroscopy, atomic absorption spectroscopy, gas chromatography, electron microscopy, optical microscopy, electronic spectroscopy for chemical analysis (ESCA), infrared spectroscopy, nuclear magnetic resonance (NMR), X-ray analysis, conductivity, and isotopic labeling were used in investigating the atomic interactions between organic environments and titanium and titanium oxide surfaces. Key anhydrous environments studied included alcohols, which contain hydrogen; carbon tetrachloride, which does not contain hydrogen; and mixtures of alcohols and halocarbons. Effects of dissolved salts in alcohols were also studied. This program emphasized experiments designed to delineate the conditions necessary rather than sufficient for initiation processes and for propagation processes in Ti SCC

    Interference in Exclusive Vector Meson Production in Heavy Ion Collisions

    Get PDF
    Photons emitted from the electromagnetic fields of relativistic heavy ions can fluctuate into quark anti-quark pairs and scatter from a target nucleus, emerging as vector mesons. These coherent interactions are identifiable by final states consisting of the two nuclei and a vector meson with a small transverse momentum. The emitters and targets can switch roles, and the two possibilities are indistinguishable, so interference may occur. Vector mesons are negative parity so the amplitudes have opposite signs. When the meson transverse wavelength is larger than the impact parameter, the interference is large and destructive. The short-lived vector mesons decay before amplitudes from the two sources can overlap, and so cannot interfere directly. However, the decay products are emitted in an entangled state, and the interference depends on observing the complete final state. The non-local wave function is an example of the Einstein-Podolsky-Rosen paradox.Comment: 13 pages with 3 figures; submitted to Physical Review Letter

    Decentralised Learning MACs for Collision-free Access in WLANs

    Get PDF
    By combining the features of CSMA and TDMA, fully decentralised WLAN MAC schemes have recently been proposed that converge to collision-free schedules. In this paper we describe a MAC with optimal long-run throughput that is almost decentralised. We then design two \changed{schemes} that are practically realisable, decentralised approximations of this optimal scheme and operate with different amounts of sensing information. We achieve this by (1) introducing learning algorithms that can substantially speed up convergence to collision free operation; (2) developing a decentralised schedule length adaptation scheme that provides long-run fair (uniform) access to the medium while maintaining collision-free access for arbitrary numbers of stations
    • …
    corecore