2,983 research outputs found

    Fabrication and delivery of non-destructive readout memory buffers using laminated layer technique Summary technical report

    Get PDF
    Material and processing development, magnetic storage devices, and design of memory incorporating foil storage devic

    Realized wishart-garch:A score-driven multi-Asset volatility model

    Get PDF
    We propose a novel multivariate GARCH model that incorporates realized measures for the covariance matrix of returns. The joint formulation of a multivariate dynamic model for outer-products of returns, realized variances, and realized covariances leads to a feasible approach for analysis and forecasting. The updating of the covariance matrix relies on the score function of the joint likelihood function based on Gaussian and Wishart densities. The dynamic model is parsimonious while the analysis relies on straightforward computations. In a Monte Carlo study, we show that parameters are estimated accurately for different small sample sizes. We illustrate the model with an empirical in-sample and out-of-sample analysis for a portfolio of 15 U.S. financial assets

    Communication and optimal hierarchical networks

    Full text link
    We study a general and simple model for communication processes. In the model, agents in a network (in particular, an organization) interchange information packets following simple rules that take into account the limited capability of the agents to deal with packets and the cost associated to the existence of open communication channels. Due to the limitation in the capability, the network collapses under certain conditions. We focus on when the collapse occurs for hierarchical networks and also on the influence of the flatness or steepness of the structure. We find that the need for hierarchy is related to the existence of costly connections.Comment: 7 pages, 2 figures. NATO ARW on Econophysic

    Suited for Success? : Suits, Status, and Hybrid Masculinity

    Get PDF
    This document is the Accepted Manuscript version. The final, definitive version of this paper has been published in Men and Masculinities, March 2017, doi: https://doi.org/10.1177/1097184X17696193, published by SAGE Publishing, All rights reserved.This article analyzes the sartorial biographies of four Canadian men to explore how the suit is understood and embodied in everyday life. Each of these men varied in their subject positions—body shape, ethnicity, age, and gender identity—which allowed us to look at the influence of men’s intersectional identities on their relationship with their suits. The men in our research all understood the suit according to its most common representation in popular culture: a symbol of hegemonic masculinity. While they wore the suit to embody hegemonic masculine configurations of practice—power, status, and rationality—most of these men were simultaneously marginalized by the gender hierarchy. We explain this disjuncture by using the concept of hybrid masculinity and illustrate that changes in the style of hegemonic masculinity leave its substance intact. Our findings expand thinking about hybrid masculinity by revealing the ways subordinated masculinities appropriate and reinforce hegemonic masculinity.Peer reviewe

    A biophysical model of prokaryotic diversity in geothermal hot springs

    Full text link
    Recent field investigations of photosynthetic bacteria living in geothermal hot spring environments have revealed surprisingly complex ecosystems, with an unexpected level of genetic diversity. One case of particular interest involves the distribution along hot spring thermal gradients of genetically distinct bacterial strains that differ in their preferred temperatures for reproduction and photosynthesis. In such systems, a single variable, temperature, defines the relevant environmental variation. In spite of this, each region along the thermal gradient exhibits multiple strains of photosynthetic bacteria adapted to several distinct thermal optima, rather than the expected single thermal strain adapted to the local environmental temperature. Here we analyze microbiology data from several ecological studies to show that the thermal distribution field data exhibit several universal features independent of location and specific bacterial strain. These include the distribution of optimal temperatures of different thermal strains and the functional dependence of the net population density on temperature. Further, we present a simple population dynamics model of these systems that is highly constrained by biophysical data and by physical features of the environment. This model can explain in detail the observed diversity of different strains of the photosynthetic bacteria. It also reproduces the observed thermal population distributions, as well as certain features of population dynamics observed in laboratory studies of the same organisms

    An in-depth view of the microscopic dynamics of Ising spin glasses at fixed temperature

    Full text link
    Using the dedicated computer Janus, we follow the nonequilibrium dynamics of the Ising spin glass in three dimensions for eleven orders of magnitude. The use of integral estimators for the coherence and correlation lengths allows us to study dynamic heterogeneities and the presence of a replicon mode and to obtain safe bounds on the Edwards-Anderson order parameter below the critical temperature. We obtain good agreement with experimental determinations of the temperature-dependent decay exponents for the thermoremanent magnetization. This magnitude is observed to scale with the much harder to measure coherence length, a potentially useful result for experimentalists. The exponents for energy relaxation display a linear dependence on temperature and reasonable extrapolations to the critical point. We conclude examining the time growth of the coherence length, with a comparison of critical and activated dynamics.Comment: 38 pages, 26 figure

    The three dimensional Ising spin glass in an external magnetic field: the role of the silent majority

    Full text link
    We perform equilibrium parallel-tempering simulations of the 3D Ising Edwards-Anderson spin glass in a field. A traditional analysis shows no signs of a phase transition. Yet, we encounter dramatic fluctuations in the behaviour of the model: Averages over all the data only describe the behaviour of a small fraction of it. Therefore we develop a new approach to study the equilibrium behaviour of the system, by classifying the measurements as a function of a conditioning variate. We propose a finite-size scaling analysis based on the probability distribution function of the conditioning variate, which may accelerate the convergence to the thermodynamic limit. In this way, we find a non-trivial spectrum of behaviours, where a part of the measurements behaves as the average, while the majority of them shows signs of scale invariance. As a result, we can estimate the temperature interval where the phase transition in a field ought to lie, if it exists. Although this would-be critical regime is unreachable with present resources, the numerical challenge is finally well posed.Comment: 42 pages, 19 figures. Minor changes and added figure (results unchanged

    Matching microscopic and macroscopic responses in glasses

    Get PDF
    We first reproduce on the Janus and Janus II computers a milestone experiment that measures the spin-glass coherence length through the lowering of free-energy barriers induced by the Zeeman effect. Secondly we determine the scaling behavior that allows a quantitative analysis of a new experiment reported in the companion Letter [S. Guchhait and R. Orbach, Phys. Rev. Lett. 118, 157203 (2017)]. The value of the coherence length estimated through the analysis of microscopic correlation functions turns out to be quantitatively consistent with its measurement through macroscopic response functions. Further, non-linear susceptibilities, recently measured in glass-forming liquids, scale as powers of the same microscopic length.Comment: 6 pages, 4 figure

    Critical parameters of the three-dimensional Ising spin glass

    Full text link
    We report a high-precision finite-size scaling study of the critical behavior of the three-dimensional Ising Edwards-Anderson model (the Ising spin glass). We have thermalized lattices up to L=40 using the Janus dedicated computer. Our analysis takes into account leading-order corrections to scaling. We obtain Tc = 1.1019(29) for the critical temperature, \nu = 2.562(42) for the thermal exponent, \eta = -0.3900(36) for the anomalous dimension and \omega = 1.12(10) for the exponent of the leading corrections to scaling. Standard (hyper)scaling relations yield \alpha = -5.69(13), \beta = 0.782(10) and \gamma = 6.13(11). We also compute several universal quantities at Tc.Comment: 9 pages, 5 figure
    • …
    corecore