5,287 research outputs found
Wave propagation in steady stratified one-dimensional cylindrical waveguides
Aims. This paper studies the propagation of longitudinal magnetic tube waves in a stratified isothermal flux tube with an internal equilibrium background flow.
Methods. The governing differential equation is solved by means of Laplace transforms and temporal and spatial solutions are developed, with boundary conditions given by various footpoint drivers, namely a monochromatic source, a delta function pulse, and a sinusoidal pulse. The effect of the background flow is to introduce an increase in amplitude of the wave perturbation and changes in phase shift when compared with the corresponding static case.
Results. Results are presented and applied to conditions in the solar atmosphere. When the source is driven continuously, the forced atmospheric oscillations are shown to have large percentage differences when compared to the corresponding static case. For the free atmospheric oscillations, percentage increases in amplitude merely a few percent are found and vary greatly in height but are practically unaltered in time. Phase shifts up to a radian are introduced and weakly depend on both height and time.
Conclusions. The results presented in this paper may have interesting observational consequences, especially when using the tools of magnetic seismology of solar atmospheric wave guides (i.e. flux tubes from photosphere to corona) in light of the present and near-future high spatial and temporal resolution space missions, e.g. Hinode, Solar Dynamics Observatory, or Solar Orbiter
Small carbon chains in circumstellar envelopes
Observations were made for a number of carbon-rich circumstellar envelopes
using the Phoenix spectrograph on the Gemini South telescope to determine the
abundance of small carbon chain molecules. Vibration-rotation lines of the
antisymmetric stretch of C near 2040 cm (4.902 m)
have been used to determine the column density for four carbon-rich
circumstellar envelopes: CRL 865, CRL 1922, CRL 2023 and IRC +10216. We
additionally calculate the column density of C for IRC +10216, and
provide an upper limit for 5 more objects. An upper limit estimate for the
C column density is also provided for IRC+10216. A comparison of these
column densities suggest a revision to current circumstellar chemical models
may be needed
Hot methane line lists for exoplanet and brown dwarf atmospheres
We present comprehensive experimental line lists of methane (CH4) at high
temperatures obtained by recording Fourier transform infrared emission spectra.
Calibrated line lists are presented for the temperatures 300 - 1400 degC at
twelve 100 degC intervals spanning the 960 - 5000 cm-1 (2.0 - 10.4 microns)
region of the infrared. This range encompasses the dyad, pentad and octad
regions, i.e., all fundamental vibrational modes along with a number of
combination, overtone and hot bands. Using our CH4 spectra, we have estimated
empirical lower state energies (Elow in cm-1) and our values have been
incorporated into the line lists along with line positions (cm-1) and
calibrated line intensities (S' in cm molecule-1). We expect our hot CH4 line
lists to find direct application in the modeling of planetary atmospheres and
brown dwarfs.Comment: Supplementary material is provided via the Astrophysical Journal
referenc
Exploring Halo Substructure with Giant Stars: The Dynamics and Metallicity of the Dwarf Spheroidal in Bootes
We report the results of a spectroscopic study of the Bootes (Boo) dwarf
spheroidal (dSph) galaxy carried out with the WIYN telescope and the Hydra
multifiber spectrograph. Radial velocities have been measured for 58 Boo
candidate stars selected to have magnitudes and colors consistent with its red
and asymptotic giant branches. Within the 13' half-light radius, seven members
of Boo yield a systemic velocity of V_r=95.6+-3.4 km/s and a velocity
dispersion of 6.6+-2.3 km/s. This implies a mass on the order of 1 x 10^7
M_sun, similar to the inferred masses of other Galactic dSphs. Adopting a total
Boo luminosity of L=1.8 x 10^4 L_sun to 8.6 x 10^4 L_sun implies M/L ~ 610 to
130, making Boo, the most distorted known Milky Way dwarf galaxy, potentially
also the darkest. From the spectra of Boo member stars we estimate its
metallicity to be [Fe/H] ~ -2.5, which would make it the most metal poor dSph
known to date.Comment: Accepted for publication in ApJ Letter
Teachers' classroom feedback: still trying to get it right
This article examines feedback traditionally given by teachers in schools. Such feedback tends to focus on children's acquisition and retrieval of externally prescribed knowledge which is then assessed against mandated tests. It suggests that, from a sociocultural learning perspective, feedback directed towards such objectives may limit children's social development. In this article, I draw on observation and interview data gathered from a group of 27 9- to 10-year olds in a UK primary school. These data illustrate the children's perceived need to conform to, rather than negotiate, the teacher's feedback comments. They highlight the children's sense that the teacher's feedback relates to school learning but not to their own interests. The article also includes alternative examples of feedback which draw on children's own inquiries and which relate to the social contexts within which, and for whom, they act. It concludes by suggesting that instead of looking for the right answer to the question of what makes teachers' feedback effective in our current classrooms, a more productive question might be how a negotiation can be opened up among teachers and learners themselves, about how teachers' feedback could support children's learning most appropriately
Absolute Electron Scattering Cross Sections for the CF2 Radical
Using a crossed electron-molecular beam experiment, featuring a skimmed nozzle beam with pyrolytic radical production, absolute elastic cross sections for electron scattering from the CF2 molecule have been measured. A new technique for placing measured cross sections on an absolute scale is used for molecular beams produced as skimmed supersonic jets. Absolute differential cross sections for CF2 are reported for incident electron energies of 30â50 eV and over an angular range of 20â135 deg. Integral cross sections are subsequently derived from those data. The present data are compared to new theoretical predictions for the differential and integral scattering cross sections, as calculated with the Schwinger multichannel variational method using the static-exchange and static-exchange plus polarization approximations
A Search for Ionized Gas in the Draco and Ursa Minor Dwarf Spheroidal Galaxies
The Wisconsin H Alpha Mapper has been used to set the first deep upper limits
on the intensity of diffuse H alpha emission from warm ionized gas in the Local
Group dwarf spheroidal galaxies (dSphs) Draco and Ursa Minor. Assuming a
velocity dispersion of 15 km/s for the ionized gas, we set limits for the H
alpha intensity of less or equal to 0.024 Rayleighs and less or equal to 0.021
Rayleighs for the Draco and Ursa Minor dSphs, respectively, averaged over our 1
degree circular beam. Adopting a simple model for the ionized interstellar
medium, these limits translate to upper bounds on the mass of ionized gas of
approximately less than 10% of the stellar mass, or approximately 10 times the
upper limits for the mass of neutral hydrogen. Note that the Draco and Ursa
Minor dSphs could contain substantial amounts of interstellar gas, equivalent
to all of the gas injected by dying stars since the end of their main star
forming episodes more than 8 Gyr in the past, without violating these limits on
the mass of ionized gas.Comment: 10 pages, 2 figures, AASTeX two-column format. Accepted for
publication in The Astrophysical Journa
Exploring Halo Substructure with Giant Stars IV: The Extended Structure of the Ursa Minor Dwarf Spheroidal
We present a large area photometric survey of the Ursa Minor dSph. We
identify UMi giant star candidates extending to ~3 deg from the center of the
dSph. Comparison to previous catalogues of stars within the tidal radius of UMi
suggests that our photometric luminosity classification is 100% accurate. Over
a large fraction of the survey area, blue horizontal branch stars associated
with UMi can also be identified. The spatial distribution of both the UMi giant
stars and the BHB stars are remarkably similar, and a large fraction of both
samples of stars are found outside the tidal radius of UMi. An isodensity
contour map of the stars within the tidal radius of UMi reveals two
morphological peculiarities: (1) The highest density of dSph stars is offset
from the center of symmetry of the outer isodensity contours. (2) The overall
shape of the outer contours appear S-shaped. We find that previously determined
King profiles with ~50' tidal radii do not fit well the distribution of our UMi
stars. A King profile with a larger tidal radius produces a reasonable fit,
however a power law with index -3 provides a better fit for radii > 20'. The
existence of UMi stars at large distances from the core of the galaxy, the
peculiar morphology of the dSph within its tidal radius, and the shape of its
surface density profile all suggest that UMi is evolving significantly due to
the tidal influence of the Milky Way. However, the photometric data on UMi
stars alone does not allow us to determine if the candidate extratidal stars
are now unbound or if they remain bound to the dSph within an extended dark
matter halo. (Abridged)Comment: accepted by AJ, 32 pages, 15 figures, emulateapj5 styl
Low-energy electron scattering by tetrahydrofuran
Cross sections for elastic scattering of low-energy electrons by tetrahydrofuran, a prototype for the furanose ring found in the backbone of DNA, have been measured and calculated over a wide energy range, with an emphasis on energies below 6 eV, where previous data are scarce. The measurements employ a thin-aperture version of the relative-flow method, while the calculations employ the Schwinger multichannel method with an extensive treatment of polarization effects. Comparisons with earlier results, both experimental and theoretical, are presented and discussed. A proper accounting for the strong permanent electric dipole of tetrahydrofuran is found to be essential to obtaining reliable cross sections, especially at energies below 5 eV
A study of 15N14N isotopic exchange over cobalt molybdenum nitrides
The 14N/15N isotopic exchange pathways over Co3Mo3N, a material of interest as an ammonia synthesis catalyst and for the development of nitrogen transfer reactions, have been investigated. Both the homomolecular and heterolytic exchange processes have been studied, and it has been shown that lattice nitrogen species are exchangeable. The exchange behavior was found to be a strong function of pretreatment with ca. 25% of lattice N atoms being exchanged after 40 min at 600 °C after N2 pretreatment at 700 °C compared to only 6% following similar Ar pretreatment. This observation, for which the potential contribution of adsorbed N species can be discounted, is significant in terms of the application of this material. In the case of the Co6Mo6N phase, regeneration to Co3Mo3N under 15N2 at 600 °C occurs concurrently with 14N15N formation. These observations demonstrate the reactivity of nitrogen in the CoâMoâN system to be a strong function of pretreatment and worthy of further consideration
- âŠ