243 research outputs found

    Dispersive spherical optical model of neutron scattering from Al27 up to 250 MeV

    Get PDF
    A spherical optical model potential (OMP) containing a dispersive term is used to fit the available experimental database of angular distribution and total cross section data for n + Al27 covering the energy range 0.1- 250 MeV using relativistic kinematics and a relativistic extension of the Schroedinger equation. A dispersive OMP with parameters that show a smooth energy dependence and energy independent geometry are determined from fits to the entire data set. A very good overall agreement between experimental data and predictions is achieved up to 150 MeV. Inclusion of nonlocality effects in the absorptive volume potential allows to achieve an excellent agreement up to 250 MeV.Comment: 13 figures (11 eps and 2 jpg), 3 table

    Uncertainty Quantification at the Microscale: A Data-Driven Multi-Scale Approach

    Get PDF
    Data-driven formulations are currently developed to deal with the complexity of the multiphysics governing the response of microelectromechanical systems (MEMS) to external stimuli and can be extremely helpful. Such devices are in fact characterized by a hierarchy of length and timescales, which are difficult to fully account for in a purely model-based approach. In this work, we specifically refer to a (single-axis) Lorentz force micro-magnetometer designed for navigation purposes. Due to an alternating current flowing in a slender mechanical part (beam) and featuring an ad hoc set frequency, the microsystem is driven into resonance so that its sensitivity to the magnetic field is improved. A reduced-order physical model was formerly developed for the aforementioned movable part of the device; this model was then used to feed and speed up a multi-physics and multi-objective topology optimization procedure, aiming to design a robust and performing magnetometer. The stochastic effects, which are responsible for the scattering in the experimental data at the microscale, were not accounted for in such a model-based approach. A recently proposed formulation is here discussed and further extended to allow for such stochastic effects. The proposed multi-scale deep learning approach features: at the material scale, a convolutional neural network adopted to learn the scattering in the mechanical properties of polysilicon, induced by its morphology; and, at the device scale, two feedforward neural networks, one adopted to upscale the mechanical properties, while the other learns a microstructure-informed mapping between the geometric imperfections induced by the microfabrication process and the effective response of the movable part of the magnetometer. The data-driven models are linked through the physical model to provide a kind of hybrid solution to the problem. Results relevant to different neural network architectures are here discussed, along with a proposal to frame the approach as a multi-fidelity, uncertainty quantification procedure

    The neutron time-of-flight facility n-TOF at CERN: Phase II

    Get PDF
    Neutron-induced reactions are studied at the neutron time-of-flight facility n-TOF at CERN. The facility uses 6∼ns wide pulses of 20 GeV/c protons impinging on a lead spallation target. The large neutron energy range and the high instantaneous neutron flux combined with high resolution are among the key characteristics of the facility. After a first phase of data taking during the period 2001-2004, the facility has been refurbished with an upgraded spallation target and cooling system for a second phase of data taking which started in 2009. Since 2010, the experimental area at 185 m where the neutron beam arrives, has been modified into a worksector of type A, allowing the extension of the physics program to include neutron-induced reactions on radioactive isotopes

    Experimental setup and procedure for the measurement of the 7Be(n,p)7Li reaction at n_TOF

    Get PDF
    Following the completion of the second neutron beam line and the related experimental area (EAR2) at the n_TOF spallation neutron source at CERN, several experiments were planned and performed. The high instantaneous neutron flux available in EAR2 allows to investigate neutron induced reactions with charged particles in the exit channel even employing targets made out of small amounts of short-lived radioactive isotopes. After the successful measurement of the 7Be(n,) cross section, the 7Be(n,p)7Li reaction was studied in order to provide still missing cross section data of relevance for Big Bang Nucleosynthesis (BBN), in an attempt to find a solution to the cosmological Lithium abundance problem. This paper describes the experimental setup employed in such a measurement and its characterization.Séptimo Programa Marco de la Comunidad Europea de la Energía Atómica (Euratom)-Proyecto CHANDA (No. 605203)Narodowe Centrum Nauki (NCN)-UMO-2012/04/M/ST2/00700-UMO-2016/22/M/ST2/00183Croatian Science Foundation-HRZZ 168

    Description of analyzing power and (p,n) reaction by a global dispersive coupled-channel optical model potential

    Get PDF
    A global dispersive coupled-channel optical model potential is used to analyze the proton elastic/inelastic analyzing power data and (p,n) data in order to investigate the prediction power of this potential. The numerical calculations show good agreement with available experimental data for proton elastic data and overall agreement for proton inelastic data. The results also showed that present global potential is approximately Lane-consistent, and can predict well the (p,n) cross sections

    Performance of the reconstruction algorithms of the FIRST experiment pixel sensors vertex detector

    Get PDF
    Hadrontherapy treatments use charged particles (e.g. protons and carbon ions) to treat tumors. During a therapeutic treatment with carbon ions, the beam undergoes nuclear fragmentation processes giving rise to significant yields of secondary charged particles. An accurate prediction of these production rates is necessary to estimate precisely the dose deposited into the tumours and the surrounding healthy tissues. Nowadays, a limited set of double differential carbon fragmentation cross-section is available. Experimental data are necessary to benchmark Monte Carlo simulations for their use in hadrontherapy. The purpose of the FIRST experiment is to study nuclear fragmentation processes of ions with kinetic energy in the range from 100 to 1000 MeV/u. Tracks are reconstructed using information from a pixel silicon detector based on the CMOS technology. The performances achieved using this device for hadrontherapy purpose are discussed. For each reconstruction step (clustering, tracking and vertexing), different methods are implemented. The algorithm performances and the accuracy on reconstructed observables are evaluated on the basis of simulated and experimental data

    Angular distributions of protons scattered by 40 Ar nuclei with excitation of the 2 + (1.46 MeV) and 3 − (3.68 MeV) collective levels for incident energies of 25.1, 32.5, and 40.7 MeV

    Get PDF
    Elastic and inelastic scattering of unpolarized and polarized protons by 40Ar nuclei for incident energies between 20 and 50 MeV has been studied by reanalyzing experimental scattering spectra for the 2+(1.46 MeV) and 3-(3.68 MeV) levels in the angular range 30º–160º for incident protons of energies of 25.1, 32.5, and 40.7 MeV. An isospin dependent soft-rotator coupled-channels optical model with the potential containing a dispersive term with a nonlocal contribution is used to analyze the data

    Recent results in nuclear astrophysics at the n_TOF facility at CERN

    Get PDF
    The neutron time of flight (n_TOF) facility at CERN is a spallation source characterized by a white neutron spectrum. The innovative features of the facility, in the two experimental areas, (20 m and 185 m), allow for an accurate determination of the neutron cross section for radioactive samples or for isotopes with small neutron capture cross section, of interest for Nuclear Astrophysics. The recent results obtained at n_TOF facility are presented
    corecore