223 research outputs found
First-Order Type Effects in YBaCuO at the Onset of Superconductivity
We present results of Raman scattering experiments on tetragonal for doping levels between 0 and
0.07 holes/CuO. Below the onset of superconductivity at , we find evidence of a diagonal superstructure. At ,
lattice and electron dynamics change discontinuously with the charge and spin
properties being renormalized at all energy scales. The results indicate that
charge ordering is intimately related to the transition at and
that the maximal transition temperature to superconductivity at optimal doping
depends on the type of ordering at .Comment: 4 pages, 4 figure
Band and momentum dependent electron dynamics in superconducting as seen via electronic Raman scattering
We present details of carrier properties in high quality single crystals obtained from electronic Raman
scattering. The experiments indicate a strong band and momentum anisotropy of
the electron dynamics above and below the superconducting transition
highlighting the importance of complex band-dependent interactions. The
presence of low energy spectral weight deep in the superconducting state
suggests a gap with accidental nodes which may be lifted by doping and/or
impurity scattering. When combined with other measurements, our observation of
band and momentum dependent carrier dynamics indicate that the iron arsenides
may have several competing superconducting ground states.Comment: 5 pages, 4 figure
Electron-boson glue function derived from electronic Raman scattering
Raman scattering cross sections depend on photon polarization. In the
cuprates nodal and antinodal directions are weighted more strongly in
and symmetry, respectively. On the other hand in angle-resolved
photoemission spectroscopy (ARPES), electronic properties are measured along
well-defined directions in momentum space rather than their weighted averages.
In contrast, the optical conductivity involves a momentum average over the
entire Brillouin zone. Newly measured Raman response data on high-quality
BiSrCaCuO single crystals up to high energies have
been inverted using a modified maximum entropy inversion technique to extract
from and Raman data corresponding electron-boson spectral
densities (glue) are compared to the results obtained with known ARPES and
optical inversions. We find that the spectrum agrees qualitatively
with nodal direction ARPES while the looks more like the optical
spectrum. A large peak around meV in , much less prominent
in , is taken as support for the importance of scattering
at this frequency.Comment: 7 pages, 3 figure
The convex Positivstellensatz in a free algebra
Given a monic linear pencil L in g variables let D_L be its positivity
domain, i.e., the set of all g-tuples X of symmetric matrices of all sizes
making L(X) positive semidefinite. Because L is a monic linear pencil, D_L is
convex with interior, and conversely it is known that convex bounded
noncommutative semialgebraic sets with interior are all of the form D_L. The
main result of this paper establishes a perfect noncommutative
Nichtnegativstellensatz on a convex semialgebraic set. Namely, a noncommutative
polynomial p is positive semidefinite on D_L if and only if it has a weighted
sum of squares representation with optimal degree bounds: p = s^* s + \sum_j
f_j^* L f_j, where s, f_j are vectors of noncommutative polynomials of degree
no greater than 1/2 deg(p). This noncommutative result contrasts sharply with
the commutative setting, where there is no control on the degrees of s, f_j and
assuming only p nonnegative, as opposed to p strictly positive, yields a clean
Positivstellensatz so seldom that such cases are noteworthy.Comment: 22 page
On real one-sided ideals in a free algebra
In classical and real algebraic geometry there are several notions of the
radical of an ideal I. There is the vanishing radical defined as the set of all
real polynomials vanishing on the real zero set of I, and the real radical
defined as the smallest real ideal containing I. By the real Nullstellensatz
they coincide. This paper focuses on extensions of these to the free algebra
R of noncommutative real polynomials in x=(x_1,...,x_g) and
x^*=(x_1^*,...,x_g^*).
We work with a natural notion of the (noncommutative real) zero set V(I) of a
left ideal I in the free algebra. The vanishing radical of I is the set of all
noncommutative polynomials p which vanish on V(I). In this paper our quest is
to find classes of left ideals I which coincide with their vanishing radical.
We completely succeed for monomial ideals and homogeneous principal ideals. We
also present the case of principal univariate ideals with a degree two
generator and find that it is very messy. Also we give an algorithm (running
under NCAlgebra) which checks if a left ideal is radical or is not, and
illustrate how one uses our implementation of it.Comment: v1: 31 pages; v2: 32 page
Matching Tree-Level Matrix Elements with Interleaved Showers
We present an implementation of the so-called CKKW-L merging scheme for
combining multi-jet tree-level matrix elements with parton showers. The
implementation uses the transverse-momentum-ordered shower with interleaved
multiple interactions as implemented in PYTHIA8. We validate our procedure
using e+e--annihilation into jets and vector boson production in hadronic
collisions, with special attention to details in the algorithm which are
formally sub-leading in character, but may have visible effects in some
observables. We find substantial merging scale dependencies induced by the
enforced rapidity ordering in the default PYTHIA8 shower. If this rapidity
ordering is removed the merging scale dependence is almost negligible. We then
also find that the shower does a surprisingly good job of describing the
hardness of multi-jet events, as long as the hardest couple of jets are given
by the matrix elements. The effects of using interleaved multiple interactions
as compared to more simplistic ways of adding underlying-event effects in
vector boson production are shown to be negligible except in a few sensitive
observables. To illustrate the generality of our implementation, we also give
some example results from di-boson production and pure QCD jet production in
hadronic collisions.Comment: 44 pages, 23 figures, as published in JHEP, including all changes
recommended by the refere
Hippocampal volume and declarative memory function in combat-related PTSD
The proposition that declarative memory deficits are systematically related to smaller hippocampal volume was tested in a relatively large sample (n = 95) of U.S. military veterans with and without combat-related posttraumatic stress disorder. This correlative analysis was extended by including multiple measures of verbal and visual declarative memory and multiple memory-relevant regional brain volumes that had been shown to exhibit main effects of PTSD in prior work. Small-to-moderate effects were observed on verbal declarative memory in line with a recent meta-analysis; nevertheless, little or no evidence of systematic linear covariation between memory measures and brain volumes was observed. (JINS, 2009, 15, 830-839.
Uncertainty Relations in Deformation Quantization
Robertson and Hadamard-Robertson theorems on non-negative definite hermitian
forms are generalized to an arbitrary ordered field. These results are then
applied to the case of formal power series fields, and the
Heisenberg-Robertson, Robertson-Schr\"odinger and trace uncertainty relations
in deformation quantization are found. Some conditions under which the
uncertainty relations are minimized are also given.Comment: 28+1 pages, harvmac file, no figures, typos correcte
Les Houches 2013: Physics at TeV Colliders: Standard Model Working Group Report
This Report summarizes the proceedings of the 2013 Les Houches workshop on
Physics at TeV Colliders. Session 1 dealt primarily with (1) the techniques for
calculating standard model multi-leg NLO and NNLO QCD and NLO EW cross sections
and (2) the comparison of those cross sections with LHC data from Run 1, and
projections for future measurements in Run 2.Comment: Proceedings of the Standard Model Working Group of the 2013 Les
Houches Workshop, Physics at TeV Colliders, Les houches 3-21 June 2013. 200
page
- …