276 research outputs found

    Viscoelastic repetitive creep and recovery in bituminous materials

    Get PDF
    Abstract Repetitive creep and recovery tests in bituminous materials- asphalt and asphalt paving mix are studied at high service temperatures. The non-exponential- stretched exponential type of continuous retardation spectrum is defined and used for the calculation of creep compliance function in repetitive shear and tensile creep and recovery experiments and also in the wheel tracking test on asphalt paving mix. It is shown that the used model, with only five adjustable parameters, can describe the test quite well. The model is also adequate for the description of the composite compliance function constructed from the linear viscoelastic data and the apparently nonlinear compliance function obtained in the wheel tracking test, for asphalt paving mix

    Mutational analysis of the major soybean UreF paralogue involved in urease activation

    Get PDF
    The soybean genome duplicated ∼14 and 45 million years ago and has many paralogous genes, including those in urease activation (emplacement of Ni and CO2 in the active site). Activation requires the UreD and UreF proteins, each encoded by two paralogues. UreG, a third essential activation protein, is encoded by the single-copy Eu3, and eu3 mutants lack activity of both urease isozymes. eu2 has the same urease-negative phenotype, consistent with Eu2 being a single-copy gene, possibly encoding a Ni carrier. Unexpectedly, two eu2 alleles co-segregated with missense mutations in the chromosome 2 UreF paralogue (Ch02UreF), suggesting lack of expression/function of Ch14UreF. However, Ch02UreF and Ch14UreF transcripts accumulate at the same level. Further, it had been shown that expression of the Ch14UreF ORF complemented a fungal ureF mutant. A third, nonsense (Q2*) allelic mutant, eu2-c, exhibited 5- to 10-fold more residual urease activity than missense eu2-a or eu2-b, though eu2-c should lack all Ch02UreF protein. It is hypothesized that low-level activation by Ch14UreF is ‘spoiled’ by the altered missense Ch02UreF proteins (‘epistatic dominant-negative’). In agreement with active ‘spoiling’ by eu2-b-encoded Ch02UreF (G31D), eu2-b/eu2-c heterozygotes had less than half the urease activity of eu2-c/eu2-c siblings. Ch02UreF (G31D) could spoil activation by Chr14UreF because of higher affinity for the activation complex, or because Ch02UreF (G31D) is more abundant than Ch14UreF. Here, the latter is favoured, consistent with a reported in-frame AUG in the 5' leader of Chr14UreF transcript. Translational inhibition could represent a form of ‘functional divergence’ of duplicated genes

    Diagnostic Value of Lingual Tonsillectomy in Unknown Primary Head and Neck Carcinoma Identification After a Negative Clinical Workup and Positron Emission Tomography-Computed Tomography

    Get PDF
    Objective: Diagnostic rates of unknown primary head and neck carcinoma (UPHNC) using lingual tonsillectomy (LT) are highly variable. This study sought to determine the diagnostic value of LT in UPHNC identification using strict inclusion criteria and definitions to produce a more accurate estimate of diagnosis rate. Methods: In this retrospective chart review, records of patients who underwent LT for UPHNC were reviewed. Inclusion criteria included absence of suspicious findings on physical exam and positron emission tomography-computed tomography as well as negative biopsies after panendoscopy and palatine tonsillectomy. Following inclusion criteria, 16 patients were reviewed. A systematic literature review on LT for the workup of CUP was also performed. Results: LT was performed using transoral robotic surgery (TORS), transoral laser microsurgery (TLM), or transoral microsurgery with cautery (TMC). Following LT, primary tumor was identified in 4 patients out of 16. Detection rate by technique was 1/6, 2/7, and 1/3 for TORS, TLM, and TMC respectively. Postoperative bleeding occurred in three patients (19%); however, this was not related to the LT. Following literature review, 12 studies were identified; however, only 3 had enough data to compare against. All three studies had a cohort with suspicious findings on clinical exam. A total of 34 patients had a negative workup, with no suspicious findings on clinical exam and subsequently received an LT. Conclusion: This study suggests that LT should be considered initially in the diagnostic algorithm for UPHNC. This study can increase the patient size in this cohort by approximately 47%

    Dynamical response of the "GGG" rotor to test the Equivalence Principle: theory, simulation and experiment. Part I: the normal modes

    Get PDF
    Recent theoretical work suggests that violation of the Equivalence Principle might be revealed in a measurement of the fractional differential acceleration η\eta between two test bodies -of different composition, falling in the gravitational field of a source mass- if the measurement is made to the level of η1013\eta\simeq 10^{-13} or better. This being within the reach of ground based experiments, gives them a new impetus. However, while slowly rotating torsion balances in ground laboratories are close to reaching this level, only an experiment performed in low orbit around the Earth is likely to provide a much better accuracy. We report on the progress made with the "Galileo Galilei on the Ground" (GGG) experiment, which aims to compete with torsion balances using an instrument design also capable of being converted into a much higher sensitivity space test. In the present and following paper (Part I and Part II), we demonstrate that the dynamical response of the GGG differential accelerometer set into supercritical rotation -in particular its normal modes (Part I) and rejection of common mode effects (Part II)- can be predicted by means of a simple but effective model that embodies all the relevant physics. Analytical solutions are obtained under special limits, which provide the theoretical understanding. A simulation environment is set up, obtaining quantitative agreement with the available experimental data on the frequencies of the normal modes, and on the whirling behavior. This is a needed and reliable tool for controlling and separating perturbative effects from the expected signal, as well as for planning the optimization of the apparatus.Comment: Accepted for publication by "Review of Scientific Instruments" on Jan 16, 2006. 16 2-column pages, 9 figure

    Urease Is Not Essential for Ureide Degradation in Soybean

    Full text link

    Essential Role of Urease in Germination of Nitrogen-Limited Arabidopsis thaliana Seeds

    Full text link

    FLORA: a novel method to predict protein function from structure in diverse superfamilies

    Get PDF
    Predicting protein function from structure remains an active area of interest, particularly for the structural genomics initiatives where a substantial number of structures are initially solved with little or no functional characterisation. Although global structure comparison methods can be used to transfer functional annotations, the relationship between fold and function is complex, particularly in functionally diverse superfamilies that have evolved through different secondary structure embellishments to a common structural core. The majority of prediction algorithms employ local templates built on known or predicted functional residues. Here, we present a novel method (FLORA) that automatically generates structural motifs associated with different functional sub-families (FSGs) within functionally diverse domain superfamilies. Templates are created purely on the basis of their specificity for a given FSG, and the method makes no prior prediction of functional sites, nor assumes specific physico-chemical properties of residues. FLORA is able to accurately discriminate between homologous domains with different functions and substantially outperforms (a 2–3 fold increase in coverage at low error rates) popular structure comparison methods and a leading function prediction method. We benchmark FLORA on a large data set of enzyme superfamilies from all three major protein classes (α, β, αβ) and demonstrate the functional relevance of the motifs it identifies. We also provide novel predictions of enzymatic activity for a large number of structures solved by the Protein Structure Initiative. Overall, we show that FLORA is able to effectively detect functionally similar protein domain structures by purely using patterns of structural conservation of all residues

    Comparative Map and Trait Viewer (CMTV): an integrated bioinformatic tool to construct consensus maps and compare QTL and functional genomics data across genomes and experiments

    Get PDF
    In the past few decades, a wealth of genomic data has been produced in a wide variety of species using a diverse array of functional and molecular marker approaches. In order to unlock the full potential of the information contained in these independent experiments, researchers need efficient and intuitive means to identify common genomic regions and genes involved in the expression of target phenotypic traits across diverse conditions. To address this need, we have developed a Comparative Map and Trait Viewer (CMTV) tool that can be used to construct dynamic aggregations of a variety of types of genomic datasets. By algorithmically determining correspondences between sets of objects on multiple genomic maps, the CMTV can display syntenic regions across taxa, combine maps from separate experiments into a consensus map, or project data from different maps into a common coordinate framework using dynamic coordinate translations between source and target maps. We present a case study that illustrates the utility of the tool for managing large and varied datasets by integrating data collected by CIMMYT in maize drought tolerance research with data from public sources. This example will focus on one of the visualization features for Quantitative Trait Locus (QTL) data, using likelihood ratio (LR) files produced by generic QTL analysis software and displaying the data in a unique visual manner across different combinations of traits, environments and crosses. Once a genomic region of interest has been identified, the CMTV can search and display additional QTLs meeting a particular threshold for that region, or other functional data such as sets of differentially expressed genes located in the region; it thus provides an easily used means for organizing and manipulating data sets that have been dynamically integrated under the focus of the researcher’s specific hypothesis
    corecore