28 research outputs found

    Firm size and types of innovation

    No full text
    We propose a general theory of innovation that illustrates the relative benefits of performing process versus product R&D when firm size is endogenous. A firm's size, scope, and R&D portfolio are shown to reflect the same underlying characteristic of the firm, namely manufacturing efficiency. We demonstrate that efficient firms become larger, have greater scope, and perform more of both process and product R&D. In light of decreasing returns to R&D, this implies small firms obtain more product innovations per dollar of R&D than large firms, which is consistent with evidence we present that small firms are more innovative than large firms as they obtain more patent counts and citations per dollar of R&D.firm size distribution, technological change, R&D portfolio,

    Roles of Performance and Human Capital in College Football Coaches' Compensation.

    Get PDF
    Despite the escalation of football coaches' salaries at National Collegiate Athletic Association (NCAA) Football Bowl Subdivision (FBS) institutions, little empirical investigation has been undertaken to identify the determinants of their compensation. As such, the purpose of this study is to explain how the level of coaching compensation is determined based on three theoretical perspectives in managerial compensation: marginal productivity theory, human capital theory, and managerialism. The analysis of compensation data of head foot-ball coaches at FBS institutions in 2006-2007 shows that the maximum total compensation of these coaches increases with their past performance. The results further reveal that coaches with greater human capital tend to receive a compensation package where bonuses account for a smaller proportion of the maximum total compensation. Overall, these findings mostly confirm the predictions drawn from managerial productivity theory, human capital theory and managerialism

    Oncogene-transformed granulosa cells as a model system for the study of steroidogenic processes

    No full text
    Highly steroidogenic granulosa cell lines were established by transfection of primary granulosa cells from preovulatory follicles with SV40 DNA and Ha-ras oncogene. Progesterone production in these cells was enhanced to levels comparable to normal steroidogenic cells, by prolonged (> 12 h) stimulation with 8-Br-cAMP, forskolin and cholera toxin, which elevate intracellular cAMP. The steroidogenic capacity of individual lines correlated with the expression of the ras oncogene product (p21) and the morphology of the cells. Formation of the steroid hormones was associated with de novo synthesis of the mitochondrial cytochrome P450scc system proteins. Since cholesterol import into mitochondria is essential for steroidogenesis, the expression of the peripheral benzodiazepine receptor (PBR) and the sterol carrier protein 2 was characterized in these cells. The induction of the expression of the genes coding for both proteins appeared to be mediated, at least in part, by cAMP. Stimulation of the PBR by specific agonists enhanced progesterone production in these cells. The phorbol ester 12-O-tetradecanoyl-phorbol 13-acetate (TPA) dramatically suppressed the cAMP-induced steroidogenesis, in spite of enhanced intracellular cAMP levels, suggesting that TPA can modify the effects of cAMP. cAMP stimulation suppressed growth of transformed cells concomitantly with induction of steroidogenesis. The transformed cells lacked receptors for the native stimulants, the gonadotropic hormones. After transfection of the cells with a lutropin (LH) receptor expression plasmid, the LH and hCG response was reconstituted. In these newly established cell lines gonadotropins were able to stimulate the formation of cAMP and progesterone in a dose-dependent manner with an ED₅₀ characteristic of the native receptor. High doses caused desensitization to gonadotropins as observed in normal cells. These newly established oncogene-transformed granulosa cell lines can serve as a useful model to study inducible steroidogenesis and the effect of oncogene expression on this process

    Brownian Inventory Models with Convex Holding Cost, Part 2: Discount-Optimal Controls

    No full text

    RNase P-mediated inhibition of cytomegalovirus protease expression and viral DNA encapsidation by oligonucleotide external guide sequences

    No full text
    External guide sequences (EGSs) are oligonucleotides that consist of a sequence complementary to a target mRNA and recruit intracellular RNase P for specific degradation of the target RNA. In this study, DNA-based EGS molecules were chemically synthesized to target the mRNA coding for the protease of human cytomegalovirus (HCMV). The EGS molecules efficiently directed human RNase P to cleave the target mRNA sequence in vitro. When EGSs were exogenously administered into HCMV-infected human foreskin fibroblasts, a reduction of about 80–90% in the expression level of the protease and a reduction of about 300-fold in HCMV growth were observed in the cells that were treated with a functional EGS, but not in cells that were not treated with the EGS or with a “disabled” EGS carrying nucleotide mutations that precluded RNase P recognition. Moreover, packaging of the viral DNA genome into the capsid was blocked in the cells treated with the functional EGS. These results indicate that HCMV protease is essential for viral DNA encapsidation. Moreover, our study provides direct evidence that exogenous administration of a DNA-based EGS can be used as a therapeutic approach for inhibiting gene expression and replication of a human virus
    corecore