7 research outputs found

    Effective removal of iron, nutrients, micropollutants, and faecal bacteria in constructed wetlands cotreating mine water and sewage treatment plant effluent

    Get PDF
    Regulators in England and Wales have set new targets under the Environment Act 2021 for freshwater quality by 2038 that include halving the length of rivers polluted by harmful metals from abandoned mines and reducing phosphorus loadings from treated wastewater by 80%. In this context, an intriguing win-win opportunity exists in the removal of iron from abandoned mines and phosphate from small sewage treatment plants by coprecipitation in constructed wetlands (CWs). We investigated such a CW located at Lamesley, Northeast England, which cotreats abandoned coal mine and secondary-treated sewage treatment plant effluents. We assessed the removal of nutrients, heavy metals, organic micropollutants, and faecal coliforms by the CW, and characterized changes in the water bacteriology comprehensively using environmental DNA. The CW effectively removed ammonium-nitrogen, phosphorus, iron, and faecal coliforms by an average of 86, 74, 98, and 75%, respectively, to levels below or insignificantly different from those in the receiving river. The CW also effectively removed micropollutants such as acetaminophen, caffeine, and sulpiride by 70-100%. Molecular microbiology methods showed successful conversion of sewage and mine water microbiomes into a freshwater microbiome. Overall, the CW significantly reduced impacts on the rural water environment with minimal operational requirements

    MinION nanopore sequencing accelerates progress towards ubiquitous genetics in water research

    No full text
    In 2014, Oxford Nanopore Technologies (ONT) introduced an affordable and portable sequencer called MinION. We reviewed emerging applications in water research and assessed progress made with this platform towards ubiquitous genetics. With >99% savings in upfront costs as compared to conventional platforms, the MinION put sequencing capacity into the hands of many researchers and enabled novel applications with diverse remits, including in countries without universal access to safe water and sanitation. However, to realize the MinION’s fabled portability, all the auxiliary equipment items for biomass concentration, genetic material extraction, cleanup, quantification, and sequencing library preparation also need to be lightweight and affordable. Only a few studies demonstrated fully portable workflows by using the MinION onboard a diving vessel, an oceanographic research ship, and at sewage treatment works. Lower nanopore sequencing read accuracy as compared to alternative platforms currently hinders MinION applications beyond research, and inclusion of positive and negative controls should become standard practice. ONT’s EPI2ME platform is a major step towards user-friendly bioinformatics. However, no consensus has yet emerged regarding the most appropriate bioinformatic pipeline, which hinders intercomparison of study results. Processing, storing, and interpreting large data sets remains a major challenge for ubiquitous genetics and democratizing sequencing applications

    Production, characterization, activation and environmental applications of engineered biochar: a review

    No full text
    corecore