95 research outputs found

    Characterizing the transient geomorphic response to base-level fall in the northeastern Tibetan Plateau

    Get PDF
    Analysis of hillslope gradient, landscape relief, and channel steepness in the Daxia River basin provides evidence of a transient geomorphic response to base-level fall on the northeastern Tibetan Plateau. Low-gradient channels and gentle hillslopes of the upper watershed are separated from a steeper, high-relief landscape by a series of convex knickzones along channel longitudinal profiles. Downstream projection of the “relict” portions of the profiles implies ~800–850 m of incision, consistent with geologic and geomorphic records of post ~1.7 Ma incision in the lower watershed. We combine optically stimulated luminescence dating of fluvial terrace deposits to constrain incision rates downstream of knickpoints with catchment-averaged 10Be concentrations in modern sediment to estimate erosion rates in tributary basins both above and below knickpoints. Both sources of data imply landscape lowering rates of ~300 m Ma−1 below the knickpoint and ~50–100 m Ma−1 above. Field measurements of channel width (n = 48) and calculations of bankfull discharge (n = 9) allow determination of scaling relations among channel hydraulic geometry, discharge, and contributing area that we employ to estimate the patterns of basal shear stress, unit stream power, and bed load transport rate throughout the channel network. Our results imply a clear downstream increase of incision potential; this result would appear to be consistent with a detachment-limited response to imposed base-level fall, in which steepening of channels drives an increase in erosion rates. In contrast, however, we do not observe apparent narrowing of channels across the transition from slowly eroding to rapidly eroding portions of the watershed. Rather, the present-day channel morphology as well as its scaling of hydraulic geometry imply that the river is primarily adjusted to transport its sediment load and suggest that channel morphology may not always reflect the presence of knickpoints and differences in landscape relief

    Dynamic hydraulic jump and retrograde sedimentation in an open channel induced by sediment supply: experimental study and SPH simulation

    Get PDF
    Mountainous torrents often carry large amounts of loose materials into the rivers, thus causing strong sediment transport. Experimentally it was found for the first time that when the intensive sediment motion occurs downstream over a gentle slope, the siltation of the riverbed is induced and the sediment particles can move upstream rapidly in the form of a retrograde sand wave, resulting in a higher water level along the river. To further study the complex mechanisms of this problem, a sediment mass model in the framework of the Smoothed Particle Hydrodynamics (SPH) method was presented to simulate the riverbed evolution, sediment particle motion, and the generation and development of dynamic hydraulic jump under the condition of sufficient sediment supply over a steep slope with varying angles. Because the sediment is not a continuous medium, the marker particle tracking approach was proposed to represent a piece of sediment with a marked sediment particle. The two-phase SPH model realizes the interaction between the sediment and fluid by moving the bed boundary particles up and down, so it can reasonably treat the fluid-sediment interfaces with high CPU efficiency. The critical triggering condition of sediment motion, the propagation of the hydraulic jump and the initial siltation position were all systematically studied. The experimental and numerical results revealed the extra disastrous sediment effect in a mountainous flood. The findings will be useful references to the disaster prevention and mitigation in mountainous rivers

    Updated Guidance Regarding The Risk ofAllergic Reactions to COVID-19 Vaccines and Recommended Evaluation and Management: A GRADE Assessment, and International Consensus Approach

    Get PDF
    This guidance updates 2021 GRADE (Grading of Recommendations Assessment, Development and Evaluation) recommendations regarding immediate allergic reactions following coronavirus disease 2019 (COVID-19) vaccines and addresses revaccinating individuals with first-dose allergic reactions and allergy testing to determine revaccination outcomes. Recent meta-analyses assessed the incidence of severe allergic reactions to initial COVID-19 vaccination, risk of mRNA-COVID-19 revaccination after an initial reaction, and diagnostic accuracy of COVID-19 vaccine and vaccine excipient testing in predicting reactions. GRADE methods informed rating the certainty of evidence and strength of recommendations. A modified Delphi panel consisting of experts in allergy, anaphylaxis, vaccinology, infectious diseases, emergency medicine, and primary care from Australia, Canada, Europe, Japan, South Africa, the United Kingdom, and the United States formed the recommendations. We recommend vaccination for persons without COVID-19 vaccine excipient allergy and revaccination after a prior immediate allergic reaction. We suggest against \u3e 15-minute postvaccination observation. We recommend against mRNA vaccine or excipient skin testing to predict outcomes. We suggest revaccination of persons with an immediate allergic reaction to the mRNA vaccine or excipients be performed by a person with vaccine allergy expertise in a properly equipped setting. We suggest against premedication, split-dosing, or special precautions because of a comorbid allergic history

    Channel Monitoring to Evaluate Geomorphic Changes on the Mainsream Colorado River

    No full text
    The project is designed to develop a better understanding of sediment transport and channel dynamics in the upper Colorado River to evaluate rates of channel change and geomorphic effects of coordinated reservoir releases and normal snowmelt flows. The study will identify the window of time of peak sediment delivery to the 15-Mile Reach. The study will also compare and contrast effects of augmenting flows on the ascending and descending limbs of the annual hydrograph. Detailed surveys of channel topography were conducted along a 1-km section of the 15-Mile Reach. Sediment traps, consisting of large tin cans filled with clean gravel, were placed at three sites in the 15-Mile Reach and at two sites in the 18-Mile Reach. Cross sections at the mouths of secondary channels and backwaters, that were first surveyed 5 years ago, were re-located and re-surveyed. The study will culminate in the development of a matrix, which can be used by the Coordinated Reservoir Operations group to tailor reservoir operation to target multiple objectives of habitat maintenance and creation

    Camera system considerations for geomorphic applications of SfM photogrammetry

    Get PDF
    The availability of high-resolution, multi-temporal, remotely sensed topographic data is revolutionizing geomorphic analysis. Three-dimensional topographic point measurements acquired from structure-from-motion (SfM) photogrammetry have been shown to be highly accurate and cost-effective compared to laser-based alternatives in some environments. Use of consumer-grade digital cameras to generate terrain models and derivatives is becoming prevalent within the geomorphic community despite the details of these instruments being largely overlooked in current SfM literature. A practical discussion of camera system selection, configuration, and image acquisition is presented. The hypothesis that optimizing source imagery can increase digital terrain model (DTM) accuracy is tested by evaluating accuracies of four SfM datasets conducted over multiple years of a gravel bed river floodplain using independent ground check points with the purpose of comparing morphological sediment budgets computed from SfM- and LiDAR-derived DTMs. Case study results are compared to existing SfM validation studies in an attempt to deconstruct the principle components of an SfM error budget. Greater information capacity of source imagery was found to increase pixel matching quality, which produced eight times greater point density and six times greater accuracy. When propagated through volumetric change analysis, individual DTM accuracy (6–37 cm) was sufficient to detect moderate geomorphic change (order 100 000m3) on an unvegetated fluvial surface; change detection determined from repeat LiDAR and SfM surveys differed by about 10%. Simple camera selection criteria increased accuracy by 64%; configuration settings or image post-processing techniques increased point density by 5–25% and decreased processing time by 10–30%. Regression analysis of 67 reviewed datasets revealed that the best explanatory variable to predict accuracy of SfM data is photographic scale. Despite the prevalent use of object distance ratios to describe scale, nominal ground sample distance is shown to be a superior metric, explaining 68% of the variability in mean absolute vertical error

    Modeling the Effects of Reservoir Releases on the Bed Material Sediment Flux of the Colorado River in western Colorado and eastern Utah

    No full text
    Warm-water reaches of the upper Colorado River have historically provided important habitat for several endangered fish species. Over time, however, these habitats have been lost because of reductions in peak flows and sediment loads caused by reservoirs. In an effort to reverse these trends, controlled reservoir releases are now used to enhance sediment transport and restore channel complexity. In this presentation, we discuss the development a sediment routing model designed to assess how changes in water and sediment supply can affect the mass balance of sediment. The model is formulated for ten reaches of the Colorado River spanning 250 km where values of bankfull discharge, width, and reach-average slope have been measured. Bed surface grain size distributions (GSDs) have also been measured at 78 locations throughout the study area; these distributions are used as a test of the model, not as input, except at the upstream boundary. In modeling transport, we assume that the bed load transport capacity is determined by local hydraulic conditions and bed surface grain sizes. Estimates of the bankfull bed load transport capacity of each reach are computed for 14 size fractions of the surface bed material, and the fractional transport rates are summed to get the total transport capacity. In the adjacent reach, fluxes of each size fraction from upstream are used to determine the mean grain size, and fractional transport capacity of that reach. Calculations proceed downstream and illustrate how linked changes in shear stress and mean grain size affect (1) the total bed load transport capacity, and (2) the size distribution of the bed surface sediment. The results show that model-derived GSDs match measured GSDs very closely, except for two reaches in the lower part of the study area where slope is affected by uplift associated with buoyant salt bodies; here the model significantly overestimates the transport capacity in relation to the supply. Except for these two reaches, the modeled bed load fluxes seem quite reasonable (0.5-1.0 kg/m/s at bankfull flow), and exhibit downstream trends that are consistent with trends reported in two previous studies. Finally, model simulations show that if reservoir releases fall short of target flows (e.g. bankfull) this can have a disproportionate negative effect on the mass balance of sediment

    Flow, Sediment Transport, and Aquatic Habitat in Large Rivers

    No full text

    Sediment Transport Primer: Estimating Bed-Material Transport in Gravel-bed Rivers

    No full text
    This primer accompanies the release of BAGS, software developed to calculate sediment transport rate in gravel-bed rivers. BAGS and other programs facilitate calculation and can reduce some errors, but cannot ensure that calculations are accurate or relevant. This primer was written to help the software user define relevant and tractable problems, select appropriate input, and interpret and apply the results in a useful and reliable fashion. It presents general concepts, develops the fundamentals of transport modeling, and examines sources of error. It introduces the data needed and evaluates different options based on the available data. Advanced expertise is not required

    Sediment Transport Primer: Estimating Bed-Material Transport in Gravel-Bed Rivers

    No full text
    This primer accompanies the release of BAGS, software developed to calculate sediment transport rate in gravel-bed rivers. BAGS and other programs facilitate calculation and can reduce some errors, but cannot ensure that calculations are accurate or relevant. This primer was written to help the software user define relevant and tractable problems, select appropriate input, and interpret and apply the results in a useful and reliable fashion. It presents general concepts, develops the fundamentals of transport modeling, and examines sources of error. It introduces the data needed and evaluates different options based on the available data. Advanced expertise is not required
    • 

    corecore