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ABSTRACT: The availability of high-resolution, multi-temporal, remotely sensed topographic data is revolutionizing geomorphic
analysis. Three-dimensional topographic point measurements acquired from structure-from-motion (SfM) photogrammetry have
been shown to be highly accurate and cost-effective compared to laser-based alternatives in some environments. Use of
consumer-grade digital cameras to generate terrain models and derivatives is becoming prevalent within the geomorphic community
despite the details of these instruments being largely overlooked in current SfM literature.
A practical discussion of camera system selection, configuration, and image acquisition is presented. The hypothesis that optimiz-

ing source imagery can increase digital terrain model (DTM) accuracy is tested by evaluating accuracies of four SfM datasets
conducted over multiple years of a gravel bed river floodplain using independent ground check points with the purpose of
comparing morphological sediment budgets computed from SfM- and LiDAR-derived DTMs. Case study results are compared to
existing SfM validation studies in an attempt to deconstruct the principle components of an SfM error budget.
Greater information capacity of source imagery was found to increase pixel matching quality, which produced eight times

greater point density and six times greater accuracy. When propagated through volumetric change analysis, individual DTM
accuracy (6–37 cm) was sufficient to detect moderate geomorphic change (order 100 000m3) on an unvegetated fluvial
surface; change detection determined from repeat LiDAR and SfM surveys differed by about 10%. Simple camera selection
criteria increased accuracy by 64%; configuration settings or image post-processing techniques increased point density by
5–25% and decreased processing time by 10–30%.
Regression analysis of 67 reviewed datasets revealed that the best explanatory variable to predict accuracy of SfM data is

photographic scale. Despite the prevalent use of object distance ratios to describe scale, nominal ground sample distance is shown
to be a superior metric, explaining 68% of the variability in mean absolute vertical error. Published 2016. This article is a U.S.
Government work and is in the public domain in the USA

KEYWORDS: Structure-from-Motion photogrammetry; camera system configuration; high-resolution remote sensing; topographic data accuracy;
LiDAR

Introduction

Three-dimensional (3D) digital terrain models (DTMs) have be-
come a staple in geosciences for characterizing topographic
surfaces and especially for analyzing spatial and temporal
geomorphic change in many environments. Various remote
sensing methods are used to obtain topographic point
measurements, including traditional photogrammetry
(e.g. Walker and Petrie, 1996), airborne laser scanning (ALS)
and terrestrial laser scanning (TLS) (light detection and ranging
[LiDAR] collectively; e.g. Heritage and Hetherington, 2007;
Anderson and Pitlick, 2014), and more recently digital imagery
that feeds structure-from-motion (SfM) photogrammetry
(e.g. James and Robson, 2012). As SfM becomes more widely
applied to process-oriented research and for analysis of
geomorphic change detection, it becomes imperative to under-
stand its utility, limitations, and particularly the accuracy of
DTMs derived from these data. Several studies have shown that

SfM can generate highly-accurate and high-resolution DTMs
more efficiently and cost-effective than laser-based alternatives
in suitable environments (Niethammer et al., 2010; James and
Robson, 2012; Nouwakpo et al., 2016). Accuracy of SfM-
derived data has been evaluated previously by comparing
results to data derived from traditional photogrammetry (James
and Robson, 2012; Rosnell and Honkavaara, 2012; Welty
et al., 2013), ALS (Fonstad et al., 2013; Dietrich, 2016), TLS
(Castillo et al., 2012; James and Robson, 2012; Westoby
et al., 2012; James and Quinton, 2014; Gómez-Gutiérrez
et al., 2014; Thoeni et al., 2014; Micheletti et al., 2015b;
Nouwakpo et al., 2016; Smith and Vericat, 2015), and terres-
trial topographic surveys (Fonstad et al., 2013; Javernick
et al., 2014; Woodget et al., 2015; Smith and Vericat, 2015).
These comparisons promote the utility of SfM, which is rapidly
becoming part of the geomorphologist’s toolbox (Gomez, 2014).

A basic principle of geomatics, and photogrammetry in partic-
ular, is that accuracy is related to photographic scale, commonly
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described as the ratio between distance in a photograph and its
corresponding ‘real world’ distance (e.g. the representative
fraction for a 30-m-wide river represented as a 1-cm-wide object
in a photograph is 1:3000 scale). Consumer-grade digital
cameras are regularly used to acquire SfM source imagery from
a variety of platforms at different scales. For a given camera
system, scale can be changed by increasing or decreasing object
distance (e.g. the distance, or range, between the camera and
ground surface). Several studies have reported ratios of precision
and accuracy of SfM data to object distance on the order of
1:1000 (James and Robson, 2012;Micheletti et al., 2015a; Smith
and Vericat, 2015). However, due to the lack of standardized
camera systems used in these studies, photographic scale is
determined by more than object distance alone.
Additionally, digital cameras are relatively easy to use; care-

ful selection and configuration of these instruments has largely
been overlooked in current SfM literature within the geosci-
ence community. Two recent reviews, Smith et al. (2016) and
Eltner et al. (2016), synthesize current best practices and
discuss error sources regarding SfM workflows, but do not
provide in-depth camera system considerations.
In the present contribution, we hypothesize that optimizing

imagery acquired for SfM photogrammetric applications in
geomorphology can increase DTM accuracy. First, we provide
a review and practical discussion of quantitative image quality
with regard to camera system selection and configuration.
Next, we test our hypothesis by evaluating the accuracy of
SfM surveys conducted over multiple years of a gravel bed river
floodplain, using independent ground check points with the
purpose of comparing morphological sediment budgets
computed from SfM- and LiDAR-derived DTMs (a common
yet restrictive application). Lastly, we compare our findings to
other studies and begin to deconstruct the principle
components of a SfM error budget, with specific consideration
of point density and scale.

Review of SfM photogrammetry

Mathews et al. (2006) described photogrammetry as ‘the art
and science of making measurements from photographs’.
Photogrammetric methods produce 3D point measurements
from photographs, where objects or surfaces are captured from
multiple perspectives. Images need to have a high degree of
overlap because the principle of stereoscopic parallax is used
to solve collinearity equations to determine the position of 3D
objects projected onto a two-dimensional (2D) image plane
(e.g. Mathews, 2008). Traditional photogrammetry often
utilizes aerial photographs acquired with calibrated (metric)
large-format (i.e. >12 900mm2 film frame) camera systems at
near nadir angle of view (e.g. Walker and Petrie, 1996).
Traditional photogrammetry relies on identification of

ground control points (GCPs) having known geodetic (i.e. geo-
graphic or real-world) coordinates to calibrate camera parame-
ters and solve collinearity equations (e.g. Buckley et al., 2004;
Fonstad et al., 2013). Close-range oblique photogrammetry
using non-calibrated (non-metric), small-format (<900mm2

sensor), and consumer-grade digital camera systems has be-
come common in the past decade (e.g. Sturznegger and Stead,
2009; Mosbrucker, 2010; Diefenbach et al., 2012; Rosnell and
Honkavaara, 2012). Like traditional photogrammetry, the
close-range oblique photogrammetry method requires robust
camera-calibration techniques and GCPs to solve collinearity
equations and orient the photogrammetric model (Chandler,
1999; Mathews et al., 2006).
In contrast to traditional and close-range oblique photogram-

metry, SfM relaxes some of these constraints, making image

acquisition and processing significantly faster and easier for
those not subject-matter experts (Castillo et al., 2012; James
and Robson, 2012; Woodget et al., 2015; Gomez et al.,
2015). Initially an open-source product of 3D computer vision
(Ullman, 1979), SfM leverages parallel processing architecture
and automated pixel-matching algorithms based on luminance
and color gradients. Robust image matching and multi-view
stereo (MVS) algorithms are better suited for reconstruction of
dense 3D point clouds from large sets of un-sorted oblique
photographs (where radiometric variation and scale changes
throughout a single frame). For this reason, SfM is often referred
to as ‘SfM-MVS’ to describe the combined workflow (e.g. James
and Robson, 2012). In contrast, traditional and close-range
oblique photogrammetric workflows employ kernel-based
cross-correlation techniques to one image pair at a time and
require minimal changes to photographic scale (e.g. Gruen,
2012). SfM algorithms solve collinearity equations prior to
scaling and transforming a photogrammetric model into a
geodetic reference system using a minimum of three GCPs
and/or camera positions (e.g. Rippen et al., 2015; Smith et al.,
2016). Very large numbers (>100 000) of auto-identified tie-
points, rather than a few GCPs, determine camera calibration
parameters. Therefore, accuracy of traditional photogrammet-
ric data depends heavily on GCP quality, whereas SfM
accuracy is affected more by image characteristics.

Much of the SfM workflow is automated, and software
(including open source and freeware) is widely available. A
few software packages integrate SfM algorithms for initial scene
reconstruction with traditional photogrammetric methods to
optimize camera calibration parameters using GCPs
(e.g. Agisoft Photoscan). More comprehensive discussions of
SfM techniques and workflows are presented in Snavely et al.
(2008), James and Robson (2012), Westoby et al. (2012),
Fonstad et al. (2013), Javernick et al. (2014), Smith et al.
(2016), and Eltner et al. (2016).

Image Optimization

Photogrammetric applications are like any other form of sur-
veying – mastery of the instrumentation is required to achieve
the best results. For SfM surveys employing consumer-grade
digital cameras, many techniques can be drawn from land-
scape photographic principles, which seek to maximize image
quality for dramatic enlargement. The following discussion
reviews camera system fundamentals and provides practical
guidelines on the use of these instruments to maximize the
information capacity of SfM datasets for geomorphic applica-
tions. Information capacity of each image, and the dataset as
whole, is improved by careful camera system selection,
configuration, and image acquisition.

A key constraint to SfM camera calibration, point density,
and DTM accuracy is pixel-level feature detection within
source imagery. Gruen (2012) states that pixel matching is
the ‘most important function in digital photogrammetry (and)
automated modelling’. This pixel matching is a function of
image quality, geometry, lighting conditions, and surface
characteristics (e.g. texture). Accurate pixel matching is
required for well-defined camera calibration parameters, SfM
tie point generation, and subsequent MVS densification,
which usually increases point density by >2 orders of magni-
tude (Smith et al., 2016). It is important to distinguish between
the accuracy of individual 3D points and subsequent point
density necessary to capture an accurate surface representa-
tion within a vector- or raster-based topographic model
(Chandler and Fryer, 2013). Westoby et al. (2012) and Gienko
and Terry (2014) demonstrate that accuracy of SfM-derived
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3D models is highly correlated with the number of points
used to reconstruct a surface (i.e. point density).

Camera system selection

Consumer-grade digital camera systems include small-format
compact cameras, interchangeable lens mirrorless, and digital
single-lens reflex (DSLR). Medium-format (e.g. 1400mm2

sensor) systems are larger and prohibitively expensive for many
projects (≥US$14 000). Recently, geomorphic studies have
been conducted with a variety of camera systems, from a smart
phone to a DSLR. Micheletti et al. (2015b) produced DTMs
with centimeter-level precision using smart phone imagery at
close range (≤10m) and a fully automated web-based analyti-
cal service. However, their accuracy improved significantly
with the use of a DSLR and commercial close-range photo-
grammetry software. Thoeni et al. (2014) compared five
cameras (16–330mm2 sensors) to a TLS benchmark at close
range (<10m) and found a general improvement in camera
system quality correlated with decreasing GCP residuals. But
how can imagery from a variety of camera systems be quanti-
fied and optimized for SfM applications? Several fundamental
photographic concepts must be explained before discussing
practical guidelines related to each. A summary of these, and
additional, guidelines is provided in the Discussion section.
A digital camera is comprised of three subsystems: a lens,

sensor, and processor. Ideally, these provide imagery which
has high effective resolution (lens and sensor), high dynamic
range (sensor and processor), high signal-to-noise ratio (SNR)
(sensor and processor), and low distortion (lens) (Cao et al.,
2010). For photogrammetric surveying, camera selection
criteria should focus on maximizing information capacity of
each image dataset, which Cao et al. (2010) found to be the
product of resolution and dynamic range. Most of the following
criteria can be found in technical specifications supplied by
camera manufacturers prior to purchasing.
Image resolution is described by the number of pixels

(megapixels; MP) a sensor records to an image file. However,
a more useful metric is effective resolution, a consequence of
detail lost through a sensor’s color filter array and lens, which
can only be determined by testing the camera system in a
laboratory environment; laboratory results for many camera-
lens combinations can be found on the web. A Bayer color
filter array is the most common type, while other proprietary
alternatives (e.g. Fuji X-Trans or Sigma Foveon) can produce

greater effective resolution for a given number of pixels
(Cramer, 2004). Bayer demosaicing typically requires the use
of an anti-aliasing filter to blur details finer than the resolution
of the sensor to prevent unwanted artifacts, but options that
‘cancel out’ the anti-aliasing filter are increasingly available.
SfM practitioners should select a camera system with high
effective resolution (≥16 MP) that has no anti-aliasing filter
effects.

Dynamic range, commonly described by a base-2 loga-
rithm called exposure value (EV), is a function of the bit depth
of a sensor’s analogue-to-digital converter (ADC), SNR, color
sensitivity, transmission, and vignetting (Cao et al., 2010).
For example, a 12-bit ADC has 12 EVs of dynamic range (if
linear). Ideally, dynamic range should be sufficient enough
to capture the entire range of luminance within a scene
(i.e. pixel information in both bright and dark areas). The best
consumer-grade digital cameras utilize sensors with ≥14-bit
non-linear ADCs.

Despite sophisticated reduction algorithms, digital noise can
significantly degrade image quality, especially in low ambient
lighting conditions. Comparable to film grain for an analogue
camera, this noise is expressed as SNR and normalized ISO
values (Cramer, 2004). SNR describes how well the signal
(i.e. light) is distinguished from background noise. ISO de-
scribes a sensor’s absolute sensitivity to light. For example,
changing a camera’s ISO setting from 100 to 200 (or 1 EV)
requires half as much light to achieve the same exposure;
however, this signal amplification also amplifies noise in
cameras not ISO-invariant. Noise is caused by random distribu-
tion of photons and sensor temperature; long exposure times
can overheat a sensor. Cao et al. (2010) found noise to be
primarily dependent on physical sensor size; larger sensors
can have greater pixel spacing (and thus fewer photon interac-
tions) along with reduced thermal energy. Users should choose
a camera with a sensor size ≥300mm2 or one that has been
found to be ISO-invariant.

Another constraint to SfM accuracy is radial distortion and
associated calibration of the camera lens (Rosnell and
Honkavaara, 2012; Sanz-Ablanedo et al., 2012). This distortion
is highly correlated to lens focal length, which determines a
camera system’s field of view. Focal length is defined by its op-
tical construction, but the field of view can change if a lens is
mounted to a camera with a different sensor size (Figure 1a).
For consumer-grade digital cameras, a focal length multiplier
is used to relate sensor size to the field of view from a full-frame
(or FX-size) camera which has a ~ 864mm2 sensor (the same

Figure 1. Interaction between several camera system parameters. Sensor size (a) influences horizontal field of view (FOV), and thus nominal ground
sample (GS) distance for a given focal length at a constant object distance (1000m); both sensors have the same resolution (24 MP) so the effect is
caused by pixel size differences (1.0× focal length multiplier for the full-frame, or FX, Nikon D610 with 6.0 μm pixels; 1.5× focal length multiplier
for the APS-C Nikon D7200 with 3.9 μm pixels). Known by photographers as the ‘sunny-16 rule’, this exposure rule-of-thumb (b) generalizes the
relationship between aperture, ISO, and shutter speed for two ambient lighting conditions (sunny and cloudy); At a given aperture, shutter speed is
the reciprocal of ISO along the line (e.g. proper exposure on a sunny day is approximately f/8 at 1/100 s at ISO 100).
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dimensions as an analogue 35-mm film frame). For instance, a
lens with a focal length of 20mm mounted on a full-frame
camera has a field of view that is 90-m wide at a distance
50m from the object. If the same lens is mounted to a smaller
sensor (e.g. >300mm2 or APS-C size) with a focal length
multiplier of 1.5, the equivalent focal length is 30mm, corre-
sponding to a 60-m-wide field of view (a 30% increase in
scale). Most digital cameras have a focal length multiplier
between 1.3 and 2.0. While the use of small focal lengths (or
wide-angle) is common to provide the largest field of view
(e.g. Eltner et al., 2016), these are subject to increased radial
distortion and smaller scale for a given object distance, which
can degrade accuracy. These effects are intensified for ultra-
wide-angle (fish-eye) lenses (~120°–220° horizontal field of
view) popular among many ‘action cameras’ (e.g. GoPro prod-
ucts) so are best avoided. For sensors with 1.0–2.0 focal length
multipliers, quality fixed focal length lenses (i.e. non-variable
or zoom) from 35 to 105mm generally produce the least
distortion and greatest effective resolution, which is still often
30–50% less than a sensor’s native resolution. Lens-related
resolution losses are caused by optical blur, chromatic aberra-
tions, and distortion.
The stability of a camera system’s internal geometry, a source

of error, can be improved by using a rigid metal camera body
with a stable and fixed lens (i.e. non-zoom and non-retractable)
(Shortis et al., 2006; Niethammer et al., 2010; Rosnell and
Honkavaara, 2012). Even a small change in focus distance,
which physically changes the optical configuration, should be
minimized for high-accuracy work; it is common practice to
tape the lens focus ring (at an appropriate distance for optimal
depth-of-field) to ensure stability of the internal camera calibra-
tion (e.g. Chandler et al., 2007; Diefenbach et al., 2012;
Nouwakpo et al., 2016). For geomorphic work, focus is often
set at infinite distance (e.g. Sanz-Ablanedo et al., 2012), though
it is becoming increasingly difficult to find autofocus lenses that
have a mechanical stop at infinity. Thankfully, many of the
highest-quality DSLR lenses available are manual focus only
with precise stops at infinity.
The most common type of camera for SfM image acquisition,

interchangeable-lens DSLRs, do not always provide the greatest
image quality. In recent years, non-interchangeable fixed-lens
compact cameras have become available featuring large
sensors, high-quality optics, and sophisticated processors;
because engineers can optimize the optical formula and lens
placement, these cameras often produce images with greater
effective resolution and equivalent dynamic range as their
larger counterparts. Additionally, the relatively small payload
of these cameras makes them increasingly deployable via
unmanned aircraft systems (e.g. Lisein et al., 2013). Lower-
quality compact camera systems can produce acceptable
results in optimal lighting conditions at short (~10m) object
distances (Micheletti et al., 2015a; Thoeni et al., 2014), but as
object distance increases and/or ambient lighting conditions
worsen (e.g. requiring greater dynamic range), users should
prioritize GCP quality to support an optimization routine
(e.g. available in Photoscan) or consider using a higher quality
camera system.
Camera system characteristics should be considered when

selecting a lens calibration model to use for 3D reconstruc-
tion. In addition to internal stability, radial distortion is more
easily modeled in fixed focal length lenses than tangential
distortion often found in zoom lenses. If a zoom lens or
automatic focusing is used, it is best to treat each image as
if it were from a different camera during scene reconstruction
using a photo invariant calibration model (Shortis et al., 2006;
Rosnell and Honkavaara, 2012). However, a fixed focal
length and fixed focus (i.e. using tape) lens is optimal; these

lenses allow the use of a more accurate block invariant
calibration model. Digital image processing can correct the
geometrical effect of aberrations and distortion (in real-time
with some cameras, during post-processing, or within a SfM
workflow); however, there remains a local loss of effective
resolution away from the center of the frame.

Camera system configuration

Provided the camera system allows manual configuration of
key parameters, as most do, a lot can be done to maximize
information capacity through careful selection of camera
system settings. Two key concepts should be prioritized: proper
exposure and focus.

Proper exposure retains pixel information in both bright and
dark areas of a scene. Exposure, or the amount of light the
sensor records, is a function of lens aperture, shutter speed,
and (to a lesser degree) ISO (Figure 1b). Optimizing these three
components can only be done in very bright lighting condi-
tions; an increase of 1 EV requires twice as much light reaching
the sensor. The camera should be configured at the lowest ISO
setting possible to mitigate noise (increase SNR) and maximize
dynamic range. Shutter speed controls the duration of time the
sensor is illuminated, typically described in units of fractions of
a second (e.g. 1/250 s is 1 EV less than 1/125 s). Shutter speed
should be short enough to overcome camera and/or subject
motion (dependent on focal length, object distance, and
velocity). A longer focal length, shorter object distance,
and/or greater velocity requires a faster shutter speed. A good
rule-of-thumb for minimum shutter speed is the reciprocal of
twice the focal length (e.g. 1/100 s for a 50mm focal length)
for stationary platforms, or <1/400 s for moving platforms such
as aircraft. Very high-resolution sensors (≥24 MP) require faster
shutter speeds to achieve the greatest effective resolution.
Camera shutters can be electronic (at the sensor), or mechani-
cal (in front of the sensor or inside the lens). Lastly, aperture
refers to the opening of a diaphragm within a lens. A large
aperture (small f-stop value) has a larger diameter opening than
a small aperture (large f-stop value). An increase of 1 EV is
achieved by opening the lens by 1 f-stop (e.g. f/8.0 to f/5.6).
ISO and aperture have an inverse relationship to shutter speed;
if a greater shutter speed is required, the user needs to select a
larger aperture or greater ISO value to achieve the same
exposure. Generally, users should select the lowest ISO value
possible while maintaining acceptable shutter speed and
aperture values.

Lens aperture selection affects more than exposure, causing
many photographers to prioritize its setting over ISO or shutter
speed. Aperture selection can affect several areas of information
capacity loss, including effective resolution, vignetting (i.e. re-
duction of brightness in the image corners), and chromatic
aberration (i.e. distortion caused by the inability to focus all
wavelengths of color to the same focal plane). Lenses with apo-
chromatic optical formulas that include low dispersion and/or
aspheric glass elements are ideal to minimize information
capacity loss, but aperture selection is of greater importance.
The optimal aperture for any lens is typically 1–3 f-stops smaller
than the maximum aperture available (e.g. selecting f/5.6–8.0 is
optimal for many f/2.0–2.8 lenses). Additionally, effective
resolution of small-format camera systems is limited by
diffraction at apertures smaller than ~f/11, creating a fairly
narrow working range (2–3 EV).

For terrestrial or low-altitude aerial photogrammetric
surveys, depth-of-field should be considered when selecting
lens focal length, aperture, and object distance to ensure sharp
focus (i.e. maximum effective resolution) throughout the scene.
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When hyperfocal distance is exceeded, such as with most
aerial surveys, the lens can simply be focused (and taped) at
infinity and aperture set to optimal as depth-of-field is not a
concern.
Other considerations include image file format and color

space. RAW files (32-bit; compared to 8-bit JPEG files) pre-
serve more dynamic range and feature less noise (Mosbrucker
et al., 2015a). RAW files (not available on all cameras) can be
recorded prior to in-camera processing and in addition to
JPEG files to use in case of over- or under-exposure, but are
not currently supported by SfM software so they require con-
version. In addition to the sensor’s dynamic range, the color
space, or coordinate system, of RGB (red–green–blue) image
files determines data precision and range at the pixel level.
Selecting a wide color space (e.g. AdobeRGB versus sRGB)
helps improve information capacity. Experience has shown
that using AdobeRGB color space (not available on all
cameras) can match 5–10% more points/frame than the same
RAW image files referenced to sRGB in 30% less time.
Lastly, internal stability of the camera system can be compro-

mised by standard features and default settings included in
many consumer-grade digital cameras. Users should disable
features such as autofocus, optical- or sensor-based image
stabilization systems, in-camera distortion correction (unless
explicitly defined during reconstruction), auto image rotation,
and noise reduction filters (which can smooth out fine details)
(Shortis et al., 2006; Sanz-Ablanedo et al., 2012).

Image acquisition

Micheletti et al. (2015b) notes that image acquisition ‘remains
(a) delicate step in (an) otherwise automated’ workflow. In
general, image acquisition involves capturing overlapping
photographs of the study area from multiple locations; all
areas of interest should be in ≥3 photographs (James and
Robson, 2012). This is typically performed by relocating one
camera system to observe a static scene, but can also be
accomplished using a network of stationary cameras observ-
ing a dynamic scene (e.g. James and Robson, 2014). Aerial
surveys can have important advantages over ground-based
image acquisition, including increased spatial coverage,
reduced occlusion, and greater pixel matching reliability due
to greater angle of incidence in low-relief terrain (e.g. Smith
and Vericat, 2015). Regardless of the platform used
(i.e. hand-held, pole-mounted, lighter-than-air blimp, kite,
unmanned aerial vehicles [UAV], or manned aircraft), mission
planning considerations for high-accuracy surveys include
information capacity (i.e. camera system selection and
configuration), lighting conditions, surface characteristics, image
geometry, and image overlap.
Ambient lighting conditions can significantly alter apparent

surface characteristics such as texture. While an overcast day
or solar noon maximizes solar incident angle and minimizes
shadows (James and Robson, 2012; Gienko and Terry, 2014;
Micheletti et al., 2015b), side light can enhance surface
texture in some environments. Pixel matching can fail or
result in reduced accuracy in areas of low contrast or noise
(e.g. homogeneous surfaces or large shadows) (Niethammer
et al., 2012; Rosnell and Honkavaara, 2012; Chandler and
Fryer, 2013; Gomez et al., 2015; Micheletti et al., 2015b).
While these conditions should be avoided if possible, imagery
can be optimized to mitigate scenes with dynamic range
larger than a given sensor can record to one file. Dynamic
range in SfM photogrammetry has been discussed in Rosnell
and Honkavaara (2012) and analyzed by Guidi et al. (2014);
their experiment showed how digitally pre-processing three
14-bit images into a single tone-mapped 8-bit high dynamic

range (HDR) image using Photoshop improved feature
matching by 5–13% (some cameras now offer in-camera
HDR processing at time of capture). The greatest improve-
ment for geomorphologic applications is likely realized in
scenes that include reflective water or snow and dark
shadows. Similarly, Gienko and Terry (2014) suggest using
polarizing filters to suppress reflections and glare in imagery.
Guidi et al. (2014) found that optical pre-processing of imag-
ery with a polarizing filter can produce 5–25% more matched
points, depending on scene characteristics.

In all types of photogrammetry, large-scale imagery com-
monly produces greater accuracy and precision due to its abil-
ity to resolve small features (e.g. Buckley et al., 2004;
Micheletti et al., 2015b). Nominal ground sample (GS) distance
is a convenient way to describe scale when comparing different
DTM source imagery. For digital photogrammetry, GS distance
is the spatial resolution of the imagery – the distance on the
ground represented by the edge of an individual pixel in an
image file – which changes across the frame of oblique image.
GS distance is computed from camera sensor dimensions, lens
focal length, and object distance (Figure 1a). In general, the
range of typical GS distance for the most common camera
systems can be computed using simple dimensional analysis;
a 24-MP sensor with a 370–860-mm2 sensor at a 1000-m
object distance produces a GS distance of 2–30 cm if the focal
length is 20–200mm, respectively (Figure 1a). For close-range
surveys (e.g. 10-m object distance), this GS distance range
scales down to 0.02–0.30 cm.

For SfM photogrammetry, several studies have found that
optimal results are achieved by acquiring imagery at multiple
scales – the entire study area supplemented by detailed imag-
ery at greater scale (Gienko and Terry, 2014; Chandler and
Fryer, 2013; Micheletti et al., 2015a, 2015b). This is best ac-
complished by changing object distance (or altitude for aerial
surveys) to maintain a stable camera for block invariant calibra-
tion. There is an inverse relationship between GS distance and
the minimum number of images required to adequately cover
the spatial extent and topographic complexity (i.e. avoid occlu-
sions); smaller GS distance values require a greater number of
images and computational abilities (James and Robson, 2012;
Smith et al., 2016).

Weak image block geometry can lower point density and
cause small-magnitude (order ≤0.2m) dome-like deformations
(i.e. a bulge in center of surface model) which affect the spatial
distribution of errors within SfM-derived DTMs (James and
Robson, 2014; Javernick et al., 2014; Nouwakpo et al., 2016;
Woodget et al., 2015). This deformation, attributed to linear
and near-parallel image blocks, is avoided in traditional photo-
grammetric workflows by judicious use of GCPs. James and
Robson (2012) found that additional GCPs can reduce error
in the final georeferenced DTM but a diminishing return is
experienced due to the rigid transformations typically used,
which prevent an optimal fit to control points. Instead, this is
mitigated in SfM by emphasizing GCP quality over quantity
(James and Robson, 2012; Javernick et al., 2014) and strength-
ening the image block with oblique and convergent imagery
captured at multiple scales (Wackrow and Chandler, 2008,
2011; Chandler and Fryer, 2013; James and Robson, 2014).
The most robust geometric solutions are from converging
optical axis at <20° (Gienko and Terry, 2014), ≥80% image
overlap, and an angle of incidence ≥40° (which may require
an elevated or airborne platform; Smith and Vericat, 2015).
Lastly, in the absence of available GCPs, datasets can be
aligned relative to each other by applying an iterative closest
point (ICP) algorithm (e.g. James and Robson, 2012: Micheletti
et al., 2015a) to optimize the transformation between two point
clouds over stable areas.
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Case Study

We use an opportunistic case study conducted on a gravel bed
river floodplain, an ideal environment for SfM application, to
illustrate the relationship between image optimization and
DTM accuracy. We first conduct an independent comparison
between TLS- and SfM-derived DTMs. We then use ground
check points to determine the absolute accuracy of each
DTM, and propagate these individual errors to DTMs of differ-
ence (DoD) comparing each method to a previously acquired
DTM derived from airborne LiDAR. Geomorphic change
detection using DoDs is one of the most restrictive morphomet-
ric analyses commonly performed using topographic data,
requiring robust geodetic control and minimization of system-
atic errors. Absolute accuracy describes the consistency of a
DTM with external data sources (geographic reference frame
required), while relative accuracy describes the internal consis-
tency of a DTM (with its own GCPs).

Study site

The May 18, 1980, eruption of Mount St Helens, Washington,
consisted of a 2.5 km3 debris avalanche followed by a blast
density current, pyroclastic flows, lahars, and tephra falls
(e.g. Lipman and Mullineaux, 1981). These disturbances
severely altered the hydrogeomorphic regime of the upper North
Fork Toutle River, whose 450 km2 basin includes the north
flank of the volcano. More than three decades after the erup-
tion, the river continues to transport an average of three million
tonnes (Mg) of suspended-sediment per year; daily average
concentration is 30–80 000mg/L (Mosbrucker et al., 2015a).
Our study area is a 500-m-long reach of the upper North

Fork Toutle River (46°16′24″N 122°15′33″W). It occupies
105 000m2 of the debris avalanche surface (Figure 2). The ac-
tive river channel through the reach is about 10m wide and
<1m deep and it frequently changes position across the flood-
plain. The reach features 10–30-m-tall near-vertical banks
separated by a 170-m-wide floodplain (Figure 3). The reach is
ideal for successful use of SfM; it provides an appropriate anal-
ysis extent, relatively rapid geomorphic change of sufficient
magnitude to exceed measurement error, highly textured
surfaces, and is sparsely vegetated, which precludes the need
for point-filtering algorithms to model the bare-earth surface
(James et al., 2012; Woodget et al., 2015; Staines et al., 2015).

Field data collection methods

Ground surveys
Precision ground-based surveying is commonly used to estab-
lish geodetic control, provide GCPs (model generation), and
ground check points (model evaluation) for remote sensing of
large areas. In order to independently assess accuracies of
TLS- and SfM-derived DTMs, we surveyed nearly 1200 ground
check points, referenced to an absolute coordinate system and
datum (Figure 2b). Immediately following the 1980 eruption of
Mount St Helens, the United States Geological Survey (USGS)
established a network of stream channel cross-sections that
have been surveyed repeatedly (Mosbrucker et al., 2015b).
One of these cross sections intersected the study reach. Short
segments of a longitudinal profile along the active edge of
water or channel thalwag were commonly surveyed on the
same date as a cross-section. Surveys conducted in 2010–
2014 used a reflectorless total station (Topcon GPT-7500; 1
arcsecond angle resolution) and real-time-kinematic global
navigation satellite system (RTK-GNSS) instruments (Trimble
R7/R8) using methods described in Rydlund and Densmore
(2012) and Mosbrucker et al. (2015b). The overall mean accu-
racy (weighted by number of points) of these check points was
8 cm horizontal (XY) and 11 cm vertical (Z). More than 60% of
the points had an absolute vertical accuracy <10 cm.

Terrestrial laser scanning (TLS) surveys
For more than a decade, a common method for obtaining topo-
graphic data within the geosciences has been airborne laser
scanning, or LiDAR, which is touted for its high-resolution, pre-
cision, ability to efficiently cover broad swaths of terrain, and
ability to obtain measurements beneath moderate vegetation
cover (Glennie et al., 2013; Passalacqua et al., 2015). Most
airborne systems use an aircraft-mounted near-infrared laser
to measure the distance to and reflectance of objects or
surfaces. Geodetic coordinates for laser-point positions are
computed from continuous onboard GNSS and inertial mea-
surement unit solutions corrected to ground station positions.
More recently, TLS has become a viable option to obtain
high-resolution measurements of topography within relatively
small areas (e.g. Bangen et al., 2014). A TLS system consists
of a hand-held (e.g. James and Quinton, 2014) or tripod-
mounted (e.g. Heritage and Hetherington, 2007) scanner that
uses a similar laser-ranging technique as airborne systems. In
the case of a tripod-mounted scanner, the instrument rotates

Figure 2. Location map of study reach (a) along North Fork Toutle River downstream of Mount St Helens in Washington State and detailed location
map (b) of surveyed ground check points (CPs) in study reach. Ground CP density is very high along historic stream channel cross-section line in the
center of the map. [Colour figure can be viewed at wileyonlinelibrary.com]
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360° but typically needs to be relocated multiple times to pro-
vide complete coverage of a study area. Similar to photogram-
metry, tie-points (in this case targets placed throughout the
area) and surveyed GCPs provide relative (internal) and abso-
lute (external) orientation of the 3D point cloud.
We use TLS data acquired from Pitlick et al. (2010) in 2010

and 2011, using a tripod-mounted 122 kHz pulse scanner (Riegl
VZ-400) from multiple ground positions at multiple elevations
to minimize topographic occlusion and range while changing
measurement incidence angle and surface reflectivity. These
data had a GS distance < 5 cm. According to the manufacturer,
the instrument had 5mm range accuracy and 3mm precision,
and an angle resolution of 1.8 arcseconds. Stationary GNSS re-
ceivers, mounted above the scanner (Riegl) and two retroreflec-
tors (Topcon), were used to georeference the TLS point clouds.
Absolute accuracies of these GCPs was <5 cm (XYZ).

Airborne SfM surveys
Four SfM datasets were acquired from August 2010 to January
2014. Surveys were conducted within days of the 2010–2011
TLS surveys. We used a consumer-grade small-format DSLR
camera system (Nikon D90; 12 MP, 380mm2 sensor, 12-bit
ADC) with a fixed focal length lens (Nikon 20mm f/2.8 AF-D)
that has a hard focus stop at infinity to ensure optical stability.
Our selection sought to maximize spatial resolution and
dynamic range, while minimizing radial lens distortion and
noise. Camera and lens configuration settings were selected
to achieve the greatest information capacity of each dataset.
The camera and lens system was upgraded in 2014 to improve
image quality (Nikon D800E; 36 MP; 860mm2 sensor, 14-bit
ADC; 50mm f/1.8 AF-D lens).
Low-angle oblique photographs were captured handheld

from the window of a manned helicopter 100–600m above
ground level at a ground speed <80 knots and in a conver-
gent pattern. In these conditions, camera frame rate allowed
>70% image overlap while encircling the study area.
Average survey time was <5minutes. With the hyperfocal
distance easily exceeded, depth of field was not a concern
so lens aperture was optimized (f/5.6–8.0 for these lenses)
and the focus ring was taped at infinity to increase the

stability of the camera’s internal geometry. Nominal GS dis-
tance was 2.6–3.0 cm for the 2010–2012 datasets and 4.2–
6.5 cm for the 2014 dataset; though the camera system had
greater resolution and longer focal length, the 2014 survey
was flown at a greater object distance to evaluate the appli-
cation of airborne SfM acquisition over Federal Aviation Ad-
ministration (FAA)-restricted public lands.

Three-dimensional (3D) reconstruction and surface
modeling

Topographic surface accuracy is a function of source data ac-
curacy and characteristics (i.e. point density and distribution),
surface interpolation method, and topographic roughness
metrics (Li et al., 2005). We focus our analysis on source data
by using the same surface interpolation method for TLS and
SfM data collected at the same location (i.e. same surface
roughness). Independently georeferenced 3D point clouds pro-
duced by each method were imported into ArcGIS Desktop
(Esri) to generate vector-based DTMs. DTMs were
interpolated using Delaunay triangulation (e.g. Li et al., 2005)
to generate continuous 2.5D surfaces of non-overlapping trian-
gular faces stored as triangulated irregular network (TIN)-based
Esri terrain datasets. To avoid introducing additional variables
into the error budget, points were not filtered (e.g. to classify
ground-returns) because vegetation was not a significant issue,
nor were they aggregated to a raster-based grid prior to
analysis.

TLS-derived DTMs

Point clouds from individual TLS scan locations were
merged and georeferenced using RiSCAN PRO (Riegl) soft-
ware. Five retroreflector positions provided internal orienta-
tion of the model; static GNSS surveys of two of these
retroreflectors and of the scanner at each location provided
GCPs for external model orientation. Datum and coordinate
system transformations converted ECEF coordinates to a

Figure 3. Photographs of North Fork Toutle River study reach on (a) August 3, 2010 and (b,c) August 14, 2012. A panoramic image (c) shows the TLS on
the left of the frame (arrow); TLS target locations are circled in red. All views are looking upstream. [Colour figure can be viewed at wileyonlinelibrary.com]
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common reference frame, orthometric elevation, and planar
coordinate system.

SfM-derived DTMs

We used VisualSfM software (free for non-commercial applica-
tions) to reconstruct 3D point clouds from the imagery. This
software integrates scale invariant feature transform (SiftGPU)
and multi-core bundle adjustment (Lowe, 2004; Wu, 2007,
2013; Wu et al., 2011) as well as providing a graphical user in-
terface to run patch-based and clustering multi-view stereo
(PMVS/CMVS; Furukawa and Ponce, 2010). Compared to other
prevalent open-source options, Bartoš et al. (2014) found
VisualSfM to be most suitable for survey documentation due
to its reliable results and ability to control key parameters
within a largely automated workflow. Working on a moderately
fast computer (64-bit, 4-core/8-thread 2.4GHz CPU, 32GB
RAM, 2GB GPU, SSD) the software produced >100 000 points
per minute. We used a block invariant calibration model; our
camera’s internal geometry was fixed.
Prior to exporting a dense 3D point cloud, a simple seven-

parameter (Helmert) least-squares transformation function
(scale, rotation, translation) within VisualSfM was used to
derive external orientation of the photogrammetric model,
producing geodetic coordinates from the model’s internal
orientation. Transformation was accomplished by manually
identifying four surveyed GCPs in the imagery (natural fea-
tures on stable surfaces); absolute accuracies of these GNSS
solutions were <9.8 cm horizontal (XY) and <12.5 cm verti-
cal (Z). Similar to TLS data, datum and coordinate system
transformations converted ECEF coordinates of the point
cloud to a common reference frame, orthometric elevation,
and planar coordinate system. In order to independently
evaluate SfM-derived DTMs, we did not use GCPs to refine
the camera-lens model, nor did we apply an iterative closest
point algorithm to optimize the transformation compared to a
pre-existing DTM.

Model evaluation methods

To examine the application of SfM to geomorphic change
detection at our study site, we compare TLS- and SfM-derived
DTMs to independent and higher-accuracy terrestrial
topographic surveys (check points), then propagate spatially
uniform error associated with each individual DTM to compute
a morphological sediment budget for our study reach. This
independent assessment of data referenced to a geodetic
coordinate system allows us to assess absolute accuracy; many
studies are limited to relative accuracy assessment because
their benchmark dataset (e.g. TLS-DTM) is first used to
georeference or transform their SfM-DTM.

Residual analysis
We evaluate surface model performance by comparison with
total station and GNSS check points. Elevations of TLS- and
SfM-derived DTMs are compared to datum- and geoid-
adjusted ground check point elevations (Federal Geographic
Data Committee [FGDC], 1998; Westaway et al., 2003). We
used a subset (n=29–225) of total check points, located in
areas unchanged by geomorphic processes between the time
of each survey, to compute summary DTM error statistics
(Table I).
Residuals allow the computation of systematic and random

errors, related respectively to survey accuracy and precision
(Cooper and Cross, 1988). Accuracy is frequently reported
as mean absolute error (MAE) or root-mean-square-error

(RMSE), whereas the standard deviation of error (SDE or σ)
provides estimates of precision (Greenwalt and Schultz,
1968; Westaway et al., 2003; Li et al., 2005). We express this
uncertainty as both MAE and RMSE (Chai and Draxler, 2014)
to facilitate comparison to other studies, but primarily draw
our conclusions from resulting MAE which has been found
by some to be more reliable and clearly interpreted
(e.g. Willmott and Matsuura, 2005). MAE is an equally-
weighted (linear) measurement of error, whereas RMSE
measures the average magnitude of error using a quadratic
function that is more sensitive to large values. Large differ-
ences between the two suggest a high degree of variance
within error residuals. Accuracies of DTMs are often reported
as single values (e.g. MAE or RMSE) without disaggregating
horizontal (planimetric-XY) and vertical (altimetric-Z) compo-
nents. When explicit, vertical error terms are more commonly
reported, consistent with how topographic change detection
maps are typically presented. In very rugged terrain, horizon-
tal error is more closely coupled to vertical error.

Pairwise DTM comparison
Owing to increasing availability of repeat topographic sur-
veys, geomorphic change is commonly analyzed by differenc-
ing DTMs (e.g. Lane et al., 2003; Wheaton et al., 2010;
Anderson and Pitlick, 2014); a morphological sediment bud-
get allows the estimation of spatially variable erosion and
deposition. We produce spatially and temporally concurrent
DoD by subtracting a DTM derived from a 2009 airborne
LiDAR survey (30 cm GS distance; Mosbrucker, 2014) from
TLS- and SfM-derived DTMs (2011). DoD volume is com-
puted by geometric comparison between each surface using
constrained Delaunay triangulation; the resulting height differ-
ential is represented by the z-values in the DoD. We assume
there is no interaction between error sources and use simple
error propagation to distinguish measurable volumetric
change from inherent noise in each DoD. A minimum level
of detection is computed using the root sum of squares from
inherent error of each DTM (Bevington, 1969; Brasington
et al., 2003; Lane et al., 2003; Bangen et al., 2014). Changes
below this level are discarded from the volume computation
by applying a probabilistic threshold to each DoD at the
68% confidence interval. In our analysis, uncertainties are
spatially uniform and SNR is high (e.g. Brasington et al.,
2000; Nouwakpo et al., 2016), so we do not employ spatially
variable estimates (e.g. Wheaton et al., 2010).

Table I. Vertical digital terrain model (DTM) accuracies as compared
to surveyed ground check point (CP) elevations

Precision Accuracy

Method Year
CP
n

SDE
(m)

MAE
(m)

RMSEfound
(m)

RMSEstated
(m)

ALS 2009 103 0.36 0.25 � 0.18 � 0.04
TLS 2010 171 0.72 0.15 � 0.37 � 0.01
TLS 2011 225 0.56 0.02 � 0.48 � 0.01
SfM 2010 164 0.87 0.36 � 0.45 � 0.97
SfM 2011 200 0.83 0.34 � 0.42 � 0.80
SfM 2012 88 0.77 0.37 � 0.39 � 0.61
SfM 2014 39 0.55 0.06 � 0.28 � 0.05

Note: standard deviation of error (SDE) is reported to the 95% confi-
dence level (1.96σ); root-mean-square-error (RMSE) is reported as com-
puted from this study (RMSEfound) and as reported by the vendor,
software, or instrument manufacturer (RMSEstated).
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Case study results

Our results show that vertical accuracies of DTMs derived from
SfM photogrammetry (0.06–0.37m) and LiDAR can be of the
same approximate magnitude (Table I, MAE). Point densities
(6.0–17.3m�2) would support the generation of gridded
models (i.e. DEMs) with cell sizes (1.0–1.6m) equal to or
greater than airborne LiDAR (Table II). Though less precise
(0.55–0.87m), SfM produced less variation in error residuals
than LiDAR (Table I, compare MAE to RMSEfound) suggesting a
relative lack of large outliers within the SfM data, despite being
unfiltered.
Volumetric change computed from spatially and temporally

concurrent TLS- and SfM-derived DTMs (Figure 4) differ by
~10% and are within analysis uncertainty (Table III). Apparent
average volume of erosion computed from both methods is
112 300� 20 950m3 over the three-year period. No significant
deposition was observed in the field but there is likely small
areas of local deposition not detected in the DoDs; deposition
volume below the minimum level of detection was much
greater for the SfM-ALS DoD than the TLS-ALS DoD. For these
data, the minimum level of detection used to threshold each
DoD is 0.46–0.51m. DoD averages are �0.26m for the SfM-
ALS DoD and �1.48m for the TLS-ALS DoD. With these
methods, we were unable to detect significant changes over
>80% of the study area, which is consistent with field observa-
tions. The standard deviation of the SfM-ALS DoD is almost
four times less than that of the TLS-ALS DoD, suggesting a
better overall fit to the 2009 ALS-derived DTM.

According to laboratory analyses (DxO Labs; http://dxomark.
com), upgrading the camera system in 2014 increased resolu-
tion by 300% (340% effective), sensor size by >240%, and
dynamic range by 360%. Noise was reduced by 300% and lens
distortion by 800%. Little change to absolute vertical accuracy
and precision of individual SfM-derived DTMs was observed
prior to this upgrade (< 8% variation in accuracy and 13%
increase in precision between 2010 and 2012). Increasing
quantitative image quality in 2014 produced an eight-fold
increase in the number of 3D points generated per frame
(Table II). We found a statistically-significant correlations
between accuracy (R2 = 0.99) and precision (R2 = 0.90) pre-
dicted by number of points per frame; the 2014 DTM was six
times more accurate and 50% more precise than 2010–2012
averages (Table I) despite a two-fold increase in GS distance
and a six-fold reduction in the number of images used during
reconstruction. Uncertainty/distance values were 1:270–294
for 2010–2012 surveys and 1:10 160 for 2014.

We did not detect a deformation pattern in our SfM-derived
DTMs. All four years used multiscale imagery acquired at
convergent angles. Furthermore, we ensured our camera
system had fixed internal geometry and were able to define this
in VisualSfM, which may have also contributed to the lack of
distortion in our results. Experience at other sites, where long
strips of parallel imagery resulted in doming, shows that
correcting radial lens distortion in Adobe Photoshop (and
disabling this correction in VisualSfM) significantly reduced this
systematic error, reduced processing time (~10%), and
generated the same number of points per frame.

Figure 4. Digital terrain models of difference (DoD) results. Both (a) SfM-ALS and (b) TLS-ALSDoDs are shownwith their respectiveminimum level of
detection (LoDmin) threshold applied. [Colour figure can be viewed at wileyonlinelibrary.com]

Table II. Digital terrain model (DTM) summary statistics for study area

DTM point characteristics

Points Pt./frame Pt. ρ Pt. d Cell size
Method Date Source n n (m�2) (m) (m)

ALS September 2009 2 passes 705 168 — 6.70 0.39 1.55
TLS August 2010 6 scans 29 170 321 — 277.04 0.06 0.24
TLS August 2011 8 scans 84 392 273 — 801.51 0.04 0.14
SfM August 2010 211 photos 1 816 408 8609 17.25 0.24 1.00
SfM August 2011 76 photos 807 421 10 624 7.67 0.36 1.44
SfM August 2012 81 photos 625 018 7716 5.94 0.41 1.64
SfM January 2014 20 photos 1 397 229 69 861 13.27 0.27 1.10

Note: Average point spacing (Pt. d) is the square root of the inverse of average point density (Pt. ρ). Supported cell size (if data are gridded) is Pt. d
multiplied by four.
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Correlation of Image Optimization to
Accuracy of SfM-derived DTMs

Review methods

Comparing SfM-derived topographic data to more established
methods (e.g. total station, GNSS, ALS, TLS) provides confi-
dence to use these data for process-oriented analyses (Smith
et al., 2016). The flexibility of SfM promotes a lack of consis-
tency in both workflow and validation which challenges efforts
to isolate sources of error. A comprehensive error budget
requires a robust experiment in a controlled environment
(Smith and Vericat, 2015); instead, our comparison investigates
overall trends to deconstruct the principle components of a SfM
error budget.
We build upon previous synthesis efforts by compiling accu-

racies of 67 SfM-derived DTM datasets and their associated sur-
vey metrics from 16 validation studies (published 2012–2015)
(Table IV). Studies employ a variety of camera systems, but
quantitative image quality metrics for each (i.e. effective resolu-
tion, dynamic range, noise, distortion) are not computed due to
lack of information. Instead, we use three available surrogates:
sensor size, focal length, and lens type.
Ordinary least squares regression models describe the

covariability of these surrogates (and other explanatory
variables) and are used to evaluate the ability to predict
accuracy of SfM-derived DTMs (response variable). We evalu-
ate the quality of fit and significance of the relationships by
checking for non-linearity, heteroscedasticity (i.e. non-constant
variability of the residuals), normality of residuals, and the
coefficient of determination (R2). The two strongest models
are presented; both models benefited from base-10 logarithmic
transformation to improve these metrics.

Review results

While the majority of studies we reviewed reported vertical er-
ror statistics only (horizontal assessment is rare in the literature),
there are fundamental differences in both the type of assess-
ment and summary statistics reported. Half of the datasets
(49%) assess relative, rather than absolute, accuracy; almost
all of these relative-accuracy studies use an ICP algorithm to
align SfM point cloud to a TLS survey prior to assessing the
accuracy of SfM data using the same TLS as the benchmark.
Relative accuracy is two times greater (9.9 cm average MAE,
n=26) than absolute accuracy (21.6 cm average MAE,
n=36). MAE is more common (n=62) than RMSE (n=39)
and both metrics are reported for 25 datasets; average RMSE
(�34.7 cm) is double average MAE (16.7 cm).
The two most common software packages used are Agisoft

Photoscan and Autodesk 123D Catch; their prevalent use fur-
ther complicates the evaluation of an error budget. Photoscan
provides a means to optimize a reconstruction based on GCPs,

analogous to traditional photogrammetry (i.e. pseudo-SfM).
Thoeni et al. (2014) found the use of an optimization routine
in Photoscan (to remove the non-linear component of the trans-
formation) reduced GCP error by 63–98%, with the greatest
improvement being for low-quality camera systems. Every
study that uses Photoscan (except Townsend [2013] and
Javernick et al. [2014]) utilizes this optimization routine, which
mitigates non-linear distortion and corrects some aspects of low
image quality. In contrast, Autodesk’s 123D Catch, a web-
based service, reduces image quality to improve processing
time at the expense of accuracy.

Our review found a 64% degradation related to lens type
(invariant of assessment type); average MAE for fixed lenses is
6.5 cm compared to 18.1 cm for zoom lenses. Results show
no universal correlation between accuracy and sensor size or
focal length. The three surrogates are well represented; 63%
of datasets have sensors >300mm2 (15 to 862mm2 range;
230mm2 mean), focal length ranges from 17 to 81mm
(equivalent) with a mean of 34mm, and 43% of reviewed
datasets use fixed focal length (rather than zoom) lenses.

Despite the importance of image quality and other parame-
ters, our review suggests that scale is the most universal explan-
atory variable in a SfM error budget. Object distance ranges
from 0.7 to 1400m (180m average, n=49), corresponding to
uncertainty/distance ratios of 1:67–1:200 000 (1:6600 average,
n=52; 1:1500 average if two outliers are removed) (Table IV;
uncertainty/distance MAE). Our regression model predicting
accuracy (MAE) from object distance for both types of accuracy
assessment (relative and absolute) shows a statistically signifi-
cant relationship between the two variables (by t-statistic and
p-value at 95% confidence interval). The model explains 54%
of the variability in MAE. Probability plot correlation coefficient
(R2 = 0.85) indicates that residuals have a homoscedastic pat-
tern and near-normal distribution. Standard errors of intercept
and slope are 0.23 and 0.13 respectively. The model,
log10(MAE) =�0.92+ 0.93log10(distance), can be retrans-
formed and corrected for associated bias if needed.

Our model using GS distance is slightly better at predicting
MAE. For the datasets reviewed, GS distance ranges from
0.01 to 23.5 cm (3.8 cm average, n=46). The model predicts
accuracy (MAE) from GS distance for both types of accuracy
assessment, shows a statistically significant relationship
between the two variables and explains 68% of the variability
in MAE. Probability plot correlation coefficient (R2 = 0.84)
indicates that residuals have a homoscedastic pattern and
near-normal distribution, with standard errors of intercept
and slope at 0.10 and 0.11 respectively. The model is:
log10(MAE) =�0.51 + 1.12log10(GS distance).

Discussion

Several factors constrain the utility and accuracy of SfM-
derived DTMs. These include scale and quality of the

Table III. Digital terrain models of difference (DoD) results

DoD period (t1 – t0) LoDmin (m) ΔMean (m) ΔSD (m) Volume of erosion (m3) Volume of deposition (m3)

2011 SfM – 2009 ALS 0.46 �0.26 2.96 106 300 2520
� 16 400 � 13 460

2011 TLS – 2009 ALS 0.51 �1.48 10.54 118 300 453
� 25 500 � 5

Note: DoDs were computed by subtracting a pre-surface (t0) from a post-surface (t1). Minimum level of detection (LoDmin) threshold was applied to the
absolute value of elevation (Z), centered around zero. Mean elevation difference (ΔMean) and associated standard deviation (ΔSD) at the 95%
confidence level (1.96σ) was computed with threshold applied. Volume of deposition may include vegetation growth. Analysis uncertainty (�) is
provided for each volume estimate.

978 A. R. MOSBRUCKER ET AL.

Published 2016. This article is a U.S. Government work and is in the public domain in the USA Earth Surf. Process. Landforms, Vol. 42, 969–986 (2017)



Ta
bl
e
IV
.

C
o
m
p
ar
is
o
n
o
f
se
le
ct
ed

ac
cu

ra
cy

re
su
lts

o
f
Sf
M
-d
er
iv
ed

d
ig
ita

l
te
rr
ai
n
m
o
d
el
s
(D

T
M
s)

C
am

er
a

G
eo

d
et
ic

co
n
tr
o
l
p
o
in
ts

A
cc
u
ra
cy

as
se
ss
m
en

t
M
A
E

R
M
SE

U
n
ce
rt
ai
n
ty
:

d
is
ta
n
ce

g
N
o
rm

al
iz
ed

b
y
G
Sg

St
u
d
y

P
la
tfo

rm
Se
n
so
r

Si
ze

Fo
ca
l

le
n
gt
h
a

Le
n
s

ty
p
e

N
o
m
in
al

G
Sb

Im
ag
es

So
ftw

ar
e

P
o
in
ts

So
u
rc
e

Ty
p
e

P
o
in
ts

B
en

ch
m
ar
k

X
Y
Z
f

X
Y

Z
X
Y
Z
f

X
Y

Z
M
A
E

R
M
SE

M
A
E

R
M
SE

(m
m

2
)

(m
m
)

(c
m
)

n
n

n
(c
m
)

(c
m
)

(c
m
)

(c
m
)

(c
m
)

(c
m
)

R
o
sn
el
l
an

d
H
o
n
ka
va
ar
a,

2
0
1
2

A
er
ia
l

4
3

2
8

Fi
xe
d

2
.5

2
8
0

iW
itn

es
s,

M
ic
ro
so
ft

P
h
o
to
sy
n
th

1
4

S-
G
N
SS

R
el
at
iv
e

1
4

So
ftw

ar
e

es
tim

at
e

—
—

—
6
0

—
—

—
11

7
—

2
4
.0

R
o
sn
el
l
an

d
H
o
n
ka
va
ar
a,

2
0
1
2

A
er
ia
l

2
2
5

4
2

Fi
xe
d

2
.6

2
5
1

iW
itn

es
s,

M
ic
ro
so
ft

P
h
o
to
sy
n
th

3
1

T
S,

T
P
-D

T
M

A
b
so
lu
te

gr
id

sa
m
e
T
P

—
—

—
—

—
1
5
0

—
8
3

—
5
7
.7

C
as
til
lo

et
al
.,
2
0
1
2

Te
rr
es
tr
ia
l

3
2
9

—
—

2
1
9
1

B
u
n
d
le
rc

6
G
N
SS

A
b
so
lu
te

gr
id

T
LS

—
—

3
—

—
—

2
3
3

—
1
.5

—
Ja
m
es

an
d

R
o
b
so
n
,

2
0
1
2

Te
rr
es
tr
ia
l

3
2
9

8
1

Fi
xe
d

0
.0
1

9
2

B
u
n
d
le
rc

4

IC
P,

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

cl
o
u
d

sa
m
e
T
LS

0
.0
1

—
—

0
.0
3

—
—

7
8
2
1

2
3
3
3

1
.2

4
.1

Ja
m
es

an
d

R
o
b
so
n
,

2
0
1
2

A
er
ia
l

3
4
3

3
2

Fi
xe
d

3
7
.1

8
9

B
u
n
d
le
rc

4
5

M
-G

N
SS

A
b
so
lu
te

gr
id

C
R
P
;
V
M
S-

G
o
tc
h
a

—
—

—
—

—
7
8

—
1
2
8
2

—
2
.1

Ja
m
es

an
d

R
o
b
so
n
,

2
0
1
2

Te
rr
es
tr
ia
l

3
2
9

4
5

Fi
xe
d

0
.4

1
4
3

B
u
n
d
le
rc

8
T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

gr
id

sa
m
e
T
LS

—
—

—
—

—
2
.1

—
9
5
2

—
5
.6

Fo
n
st
ad

et
al
.,
2
0
1
3

A
er
ia
l

2
8

3
7

V
ar
ia
b
le

5
3
0
4

M
ic
ro
so
ft

P
h
o
to
sy
n
th

1
0

M
-G

N
SS

A
b
so
lu
te

1
5

M
-G

N
SS

—
4

7
—

—
—

5
7
1

—
1
.4

—
Fo

n
st
ad

et
al
.,
2
0
1
3

A
er
ia
l

2
8

3
7

V
ar
ia
b
le

5
3
0
4

M
ic
ro
so
ft

P
h
o
to
sy
n
th

1
0

M
-G

N
SS

A
b
so
lu
te

cl
o
u
d

A
LS

—
—

6
0

—
—

—
6
7

—
1
2
.0

—

To
w
n
se
n
d
,

2
0
1
3

A
er
ia
l

3
6
7

5
3

V
ar
ia
b
le

1
.2

7
0

A
gi
so
ft

P
h
o
to
sc
an

n
o
t
o
p
ti
m
iz
ed

8
M
-G

N
SS
,

A
LS

R
el
at
iv
e

7
So

ftw
ar
e

es
tim

at
e

—
3
2

8
0

—
9
9

8
9

1
0
4

9
3

6
6
.7

7
4
.2

W
el
ty

et
al
.,
2
0
1
3

A
er
ia
l

3
7
2

—
—

—
3
8
3

B
u
n
d
le
rc

3
8
3

R
-G

N
SS

A
b
so
lu
te

gr
id

T
P

—
—

7
7

—
—

—
1
8
1
8

—
—

—
Ja
m
es

an
d

Q
u
in
to
n
,

2
0
1
4

Te
rr
es
tr
ia
l

3
2
9

4
5

Fi
xe
d

0
.5

8
7

B
u
n
d
le
rc

8

IC
P,

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

cl
o
u
d

sa
m
e
T
LS

1
.4
4

—
—

1
.7
8

—
—

1
7
3
6

1
4
0
4

3
.1

3
.8

G
óm

ez
-G

u
tié
rr
ez

et
al
.,
2
0
1
4

Te
rr
es
tr
ia
l

3
3
2

—
V
ar
ia
b
le

—
9
3

A
u
to
d
es
k

1
2
3
D

C
at
ch

d
1
0

IC
P,

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

cl
o
u
d

sa
m
e
T
LS

2
.5

—
—

—
—

—
3
7
2

—
—

—

G
óm

ez
-G

u
tié
rr
ez

et
al
.,
2
0
1
4

Te
rr
es
tr
ia
l

3
3
2

—
V
ar
ia
b
le

—
9
3

A
u
to
d
es
k

1
2
3
D

C
at
ch

d
1
0

IC
P,

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

gr
id

sa
m
e
T
LS

—
—

1
.9

—
—

4
.7

—
—

—
—

G
óm

ez
-G

u
tié
rr
ez

et
al
.,
2
0
1
4

Te
rr
es
tr
ia
l

3
3
2

—
V
ar
ia
b
le

—
6
6

A
u
to
d
es
k

1
2
3
D

C
at
ch

d
1
0

IC
P,

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

cl
o
u
d

sa
m
e
T
LS

0
.9

—
—

—
—

—
11

6
7

—
—

—

G
óm

ez
-G

u
tié
rr
ez

et
al
.,
2
0
1
4

Te
rr
es
tr
ia
l

3
3
2

—
V
ar
ia
b
le

—
6
6

A
u
to
d
es
k

1
2
3
D

C
at
ch

d
1
0

IC
P,

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

gr
id

sa
m
e
T
LS

—
—

0
.3

—
—

9
.1

—
—

—
—

G
óm

ez
-G

u
tié
rr
ez

et
al
.,
2
0
1
4

Te
rr
es
tr
ia
l

3
3
2

—
V
ar
ia
b
le

—
7
3

A
u
to
d
es
k

1
2
3
D

C
at
ch

d
1
0

IC
P,

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

cl
o
u
d

sa
m
e
T
LS

2
.4

—
—

—
—

—
4
0
4

—
—

—

(C
o
n
tin

ue
s)

979CAMERA SYSTEM CONFIGURATION TO OPTIMIZE SFM IMAGERY

Published 2016. This article is a U.S. Government work and is in the public domain in the USA Earth Surf. Process. Landforms, Vol. 42, 969–986 (2017)



Ta
bl
e
IV
.

(C
o
n
tin

u
ed

)

C
am

er
a

G
eo

d
et
ic

co
n
tr
o
l
p
o
in
ts

A
cc
u
ra
cy

as
se
ss
m
en

t
M
A
E

R
M
SE

U
n
ce
rt
ai
n
ty
:

d
is
ta
n
ce

g
N
o
rm

al
iz
ed

b
y
G
Sg

St
u
d
y

P
la
tfo

rm
Se
n
so
r

Si
ze

Fo
ca
l

le
n
gt
h
a

Le
n
s

ty
p
e

N
o
m
in
al

G
Sb

Im
ag
es

So
ftw

ar
e

P
o
in
ts

So
u
rc
e

Ty
p
e

P
o
in
ts

B
en

ch
m
ar
k

X
Y
Z
f

X
Y

Z
X
Y
Z
f

X
Y

Z
M
A
E

R
M
SE

M
A
E

R
M
SE

(m
m

2
)

(m
m
)

(c
m
)

n
n

n
(c
m
)

(c
m
)

(c
m
)

(c
m
)

(c
m
)

(c
m
)

G
óm

ez
-G

u
tié
rr
ez

et
al
.,
2
0
1
4

Te
rr
es
tr
ia
l

3
3
2

—
V
ar
ia
b
le

—
7
3

A
u
to
d
es
k

1
2
3
D

C
at
ch

d
1
0

IC
P,

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

gr
id

sa
m
e
T
LS

—
—

1
.9

—
—

3
.6

—
—

—
—

G
óm

ez
-G

u
tié
rr
ez

et
al
.,
2
0
1
4

Te
rr
es
tr
ia
l

3
3
2

—
V
ar
ia
b
le

—
4
1

A
u
to
d
es
k

1
2
3
D

C
at
ch

d
1
0

IC
P,

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

cl
o
u
d

sa
m
e
T
LS

1
.2

—
—

—
—

—
7
9
2

—
—

—

G
óm

ez
-G

u
tié
rr
ez

et
al
.,
2
0
1
4

Te
rr
es
tr
ia
l

3
3
2

—
V
ar
ia
b
le

—
4
1

A
u
to
d
es
k

1
2
3
D

C
at
ch

d
1
0

IC
P,

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

gr
id

sa
m
e
T
LS

—
—

0
.6

—
—

2
.5

—
—

—
—

G
óm

ez
-G

u
tié
rr
ez

et
al
.,
2
0
1
4

Te
rr
es
tr
ia
l

3
3
2

—
V
ar
ia
b
le

—
4
8

A
u
to
d
es
k

1
2
3
D

C
at
ch

d
1
0

IC
P,

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

cl
o
u
d

sa
m
e
T
LS

2
—

—
—

—
—

5
0
0

—
—

—

G
óm

ez
-G

u
tié
rr
ez

et
al
.,
2
0
1
4

Te
rr
es
tr
ia
l

3
3
2

—
V
ar
ia
b
le

—
4
8

A
u
to
d
es
k

1
2
3
D

C
at
ch

d
1
0

IC
P,

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

gr
id

sa
m
e
T
LS

—
—

0
.7

—
—

4
.2

—
—

—
—

W
o
o
d
ge
t

et
al
.,
2
0
1
5

A
er
ia
l

4
5

2
4

V
ar
ia
b
le

1
.1

5
8

A
gi
so
ft

P
h
o
to
sc
an

e
2
1

T
S

A
b
so
lu
te

2
7
9

S-
G
N
SS
,
T
S

—
—

0
.5

—
—

—
5
3
7
8

—
0
.5

—
W
o
o
d
ge
t

et
al
.,
2
0
1
5

A
er
ia
l

4
5

2
4

V
ar
ia
b
le

1
.1

4
1

A
gi
so
ft

P
h
o
to
sc
an

e
2
2

T
S

A
b
so
lu
te

2
1
8

S-
G
N
SS
,
T
S

—
—

0
.4

—
—

—
6
4
5
3

—
0
.4

—
W
o
o
d
ge
t

et
al
.,
2
0
1
5

A
er
ia
l

4
5

2
4

V
ar
ia
b
le

1
.1

3
2

A
gi
so
ft

P
h
o
to
sc
an

e
1
6

S-
G
N
SS

A
b
so
lu
te

5
7

S-
G
N
SS
,
T
S

—
—

4
.4

—
—

—
6
2
6

—
3
.9

—
W
o
o
d
ge
t

et
al
.,
2
0
1
5

A
er
ia
l

4
5

2
4

V
ar
ia
b
le

1
.2

6
4

A
gi
so
ft

P
h
o
to
sc
an

e
2
5

T
S

A
b
so
lu
te

5
3
2

S-
G
N
SS
,
T
S

—
—

11
.1

—
—

—
2
5
6

—
9
.6

—

Ja
ve
rn
ic
k

et
al
.,
2
0
1
4

A
er
ia
l

3
2
9

4
7

V
ar
ia
b
le

1
4

1
4
7

A
gi
so
ft

P
h
o
to
sc
an

n
o
t
o
p
ti
m
iz
ed

9
5

S-
G
N
SS

A
b
so
lu
te

1
9
8
5

S-
G
N
SS

—
—

1
7
5

—
—

2
2
7

4
0
0

3
0
8

1
2
.5

1
6
.2

Ja
ve
rn
ic
k

et
al
.,
2
0
1
4

A
er
ia
l

3
2
9

4
7

V
ar
ia
b
le

1
4

1
4
7

A
gi
so
ft

P
h
o
to
sc
an

e
9
5

S-
G
N
SS

A
b
so
lu
te

1
9
8
5

S-
G
N
SS

—
—

1
4

—
—

1
7

5
0
0
0

4
11

8
1
.0

1
.2

Ja
ve
rn
ic
k

et
al
.,
2
0
1
4

A
er
ia
l

3
2
9

4
7

V
ar
ia
b
le

1
2

1
0
6

A
gi
so
ft

P
h
o
to
sc
an

e
7
0

S-
G
N
SS

A
b
so
lu
te

11
1
6

S-
G
N
SS

—
—

2
3

—
—

2
9

2
6
0
9

2
0
6
9

1
.9

2
.4

T
h
o
en

i
et

al
.,
2
0
1
4

Te
rr
es
tr
ia
l

2
5

1
7

Fi
xe
d

0
.4

1
9

A
gi
so
ft

P
h
o
to
sc
an

e
8

T
S

A
b
so
lu
te

cl
o
u
d

T
LS

4
.2

—
—

—
—

—
1
3
3

—
1
0
.4

—
T
h
o
en

i
et

al
.,
2
0
1
4

Te
rr
es
tr
ia
l

1
6

3
3

Fi
xe
d

0
.3

2
6

A
gi
so
ft

P
h
o
to
sc
an

e
8

T
S

A
b
so
lu
te

cl
o
u
d

T
LS

1
.6

—
—

—
—

—
5
3
8

—
5
.6

—
T
h
o
en

i
et

al
.,
2
0
1
4

Te
rr
es
tr
ia
l

4
5

2
2

V
ar
ia
b
le

0
.3

1
8

A
gi
so
ft

P
h
o
to
sc
an

e
8

T
S

A
b
so
lu
te

cl
o
u
d

T
LS

0
.7

—
—

—
—

—
1
0
1
4

—
2
.3

—
T
h
o
en

i
et

al
.,
2
0
1
4

Te
rr
es
tr
ia
l

2
8

2
5

V
ar
ia
b
le

0
.2

2
4

A
gi
so
ft

P
h
o
to
sc
an

e
8

T
S

A
b
so
lu
te

cl
o
u
d

T
LS

0
.7

—
—

—
—

—
9
1
4

—
3
.2

—
T
h
o
en

i
et

al
.,
2
0
1
4

Te
rr
es
tr
ia
l

3
3
2

4
5

Fi
xe
d

0
.1

2
6

A
gi
so
ft

P
h
o
to
sc
an

e
8

T
S

A
b
so
lu
te

cl
o
u
d

T
LS

0
.6

—
—

—
—

—
1
5
7
4

—
4
.1

—

M
ic
h
el
et
ti

et
al
.,
2
0
1
5
b

Te
rr
es
tr
ia
l

3
6
8

5
3

Fi
xe
d

0
.3

1
3

A
u
to
d
es
k

1
2
3
D

C
at
ch

d
1
0

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

cl
o
u
d

sa
m
e
T
LS

0
.9

—
—

—
—

—
11

11
—

3
.0

—

M
ic
h
el
et
ti

et
al
.,
2
0
1
5
b

Te
rr
es
tr
ia
l

3
6
8

5
3

Fi
xe
d

0
.3

1
3

A
u
to
d
es
k

1
2
3
D

C
at
ch

d
1
0

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

gr
id

sa
m
e
T
LS

—
—

—
—

—
6
.5

—
1
5
5

—
2
1
.6

(C
o
n
tin

u
es
)

980 A. R. MOSBRUCKER ET AL.

Published 2016. This article is a U.S. Government work and is in the public domain in the USA Earth Surf. Process. Landforms, Vol. 42, 969–986 (2017)



Ta
bl
e
IV
.

(C
o
n
tin

u
ed

)

C
am

er
a

G
eo

d
et
ic

co
n
tr
o
l
p
o
in
ts

A
cc
u
ra
cy

as
se
ss
m
en

t
M
A
E

R
M
SE

U
n
ce
rt
ai
n
ty
:

d
is
ta
n
ce

g
N
o
rm

al
iz
ed

b
y
G
Sg

St
u
d
y

P
la
tfo

rm
Se
n
so
r

Si
ze

Fo
ca
l

le
n
gt
h
a

Le
n
s

ty
p
e

N
o
m
in
al

G
Sb

Im
ag
es

So
ftw

ar
e

P
o
in
ts

So
u
rc
e

Ty
p
e

P
o
in
ts

B
en

ch
m
ar
k

X
Y
Z
f

X
Y

Z
X
Y
Z
f

X
Y

Z
M
A
E

R
M
SE

M
A
E

R
M
SE

(m
m

2
)

(m
m
)

(c
m
)

n
n

n
(c
m
)

(c
m
)

(c
m
)

(c
m
)

(c
m
)

(c
m
)

M
ic
h
el
et
ti

et
al
.,
2
0
1
5
b

Te
rr
es
tr
ia
l

3
6
8

5
3

Fi
xe
d

0
.3

1
3

A
u
to
d
es
k

1
2
3
D

C
at
ch

d
1
0

IC
P,

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

cl
o
u
d

sa
m
e
T
LS

0
.5

—
—

—
—

—
1
8
8
7

—
1
.8

M
ic
h
el
et
ti

et
al
.,
2
0
1
5
b

Te
rr
es
tr
ia
l

3
6
8

5
3

Fi
xe
d

0
.3

1
3

A
u
to
d
es
k

1
2
3
D

C
at
ch

d
1
0

IC
P,

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

gr
id

sa
m
e
T
LS

—
—

—
—

—
1
.7

—
5
9
5

—
5
.6

M
ic
h
el
et
ti

et
al
.,
2
0
1
5
b

Te
rr
es
tr
ia
l

1
5

2
9

Fi
xe
d

0
.6

1
3

A
u
to
d
es
k

1
2
3
D

C
at
ch

d
1
0

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

cl
o
u
d

sa
m
e
T
LS

2
.1

—
—

—
—

—
4
8
3

—
3
.5

—

M
ic
h
el
et
ti

et
al
.,
2
0
1
5
b

Te
rr
es
tr
ia
l

1
5

2
9

Fi
xe
d

0
.6

1
3

A
u
to
d
es
k

1
2
3
D

C
at
ch

d
1
0

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

gr
id

sa
m
e
T
LS

—
—

—
—

—
5
.0

—
1
9
9

—
8
.4

M
ic
h
el
et
ti

et
al
.,
2
0
1
5
b

Te
rr
es
tr
ia
l

1
5

2
9

Fi
xe
d

0
.6

1
3

A
u
to
d
es
k

1
2
3
D

C
at
ch

d
1
0

IC
P,

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

cl
o
u
d

sa
m
e
T
LS

1
.1

—
—

—
—

—
9
5
2

—
1
.8

—

M
ic
h
el
et
ti

et
al
.,
2
0
1
5
b

Te
rr
es
tr
ia
l

1
5

2
9

Fi
xe
d

0
.6

1
3

A
u
to
d
es
k

1
2
3
D

C
at
ch

d
1
0

IC
P,

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

gr
id

sa
m
e
T
LS

—
—

—
—

—
3
.1

—
3
2
7

—
5
.1

M
ic
h
el
et
ti

et
al
.,
2
0
1
5
b

Te
rr
es
tr
ia
l

1
5

2
9

Fi
xe
d

2
3
.5

1
3

A
u
to
d
es
k

1
2
3
D

C
at
ch

d
8

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

cl
o
u
d

sa
m
e
T
LS

6
8
.9

—
—

—
—

—
5
8
0

—
2
.9

—

M
ic
h
el
et
ti

et
al
.,
2
0
1
5
b

Te
rr
es
tr
ia
l

1
5

2
9

Fi
xe
d

2
3
.5

1
3

A
u
to
d
es
k

1
2
3
D

C
at
ch

d
8

IC
P,

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

cl
o
u
d

sa
m
e
T
LS

5
2
.6

—
—

—
—

—
7
6
0

—
2
.2

—
Sm

ith
an

d
V
er
ic
at
,
2
0
1
5

A
er
ia
l

2
8

2
9

V
ar
ia
b
le

1
.7

3
5
0

A
gi
so
ft

P
h
o
to
sc
an

e
3
0

S-
G
N
SS

A
b
so
lu
te

gr
id

T
LS

—
—

2
1
.8

—
—

3
0
.8

2
1
6

1
5
3

1
2
.8

1
8
.1

Sm
ith

an
d

V
er
ic
at
,
2
0
1
5

Te
rr
es
tr
ia
l

2
5

2
5

V
ar
ia
b
le

0
.2

2
5
–3

3
A
gi
so
ft

P
h
o
to
sc
an

e
5

S-
G
N
SS
,
T
S
A
b
so
lu
te

9–
3
6

T
S

—
—

2
.8

—
—

3
.7

1
7
7

1
2
6
0

1
4
.2

1
8
.7

Sm
ith

an
d

V
er
ic
at
,
2
0
1
5

Te
rr
es
tr
ia
l

2
5

2
5

V
ar
ia
b
le

0
.2

2
5
–3

3
A
gi
so
ft

P
h
o
to
sc
an

e
5

S-
G
N
SS
,
T
S
A
b
so
lu
te

gr
id

T
LS

—
—

0
.9

—
—

1
.3

5
4
3

3
6
7
2

4
.6

6
.4

Sm
ith

an
d

V
er
ic
at
,
2
0
1
5

Te
rr
es
tr
ia
l

2
5

2
5

V
ar
ia
b
le

—
—

A
gi
so
ft

P
h
o
to
sc
an

e
3
0

S-
G
N
SS

A
b
so
lu
te

gr
id

T
LS

—
—

1
0
.1

—
—

1
8
.3

—
—

—
—

Sm
ith

an
d

V
er
ic
at
,
2
0
1
5

Te
rr
es
tr
ia
l

2
5

2
5

V
ar
ia
b
le

—
—

A
gi
so
ft

P
h
o
to
sc
an

e
3
0

S-
G
N
SS

A
b
so
lu
te

5
0
4

T
S

—
—

1
0
.2

—
—

1
8
.3

—
—

—
—

Sm
ith

an
d

V
er
ic
at
,
2
0
1
5

A
er
ia
l

3
5
6

2
5

V
ar
ia
b
le

2
.2

1
4
9

A
gi
so
ft

P
h
o
to
sc
an

e
3
0

S-
G
N
SS

A
b
so
lu
te

5
1
5

T
S

—
—

6
.6

—
—

9
.9

1
0
6
1

7
0
7

3
.0

4
.5

Sm
ith

an
d

V
er
ic
at
,
2
0
1
5

A
er
ia
l

3
5
6

2
5

V
ar
ia
b
le

2
.2

1
4
9

A
gi
so
ft

P
h
o
to
sc
an

e
3
0

S-
G
N
SS

A
b
so
lu
te

gr
id

T
LS

—
—

5
.5

—
—

8
.0

1
2
7
3

8
7
5

2
.5

3
.6

Sm
ith

an
d

V
er
ic
at
,
2
0
1
5

A
er
ia
l

3
5
6

2
5

V
ar
ia
b
le

5
.3

5
2
7

A
gi
so
ft

P
h
o
to
sc
an

e
3
0

S-
G
N
SS

A
b
so
lu
te

5
1
5

0
.1

m
gr
id

vs
.
T
S

—
—

1
2
.1

—
—

1
8
.2

1
4
0
5

9
3
4

2
.3

3
.4

Sm
ith

an
d

V
er
ic
at
,
2
0
1
5

A
er
ia
l

3
5
6

2
5

V
ar
ia
b
le

5
.3

5
2
7

A
gi
so
ft

P
h
o
to
sc
an

e
3
0

S-
G
N
SS

A
b
so
lu
te

7
3
0

1
.0

m
gr
id

vs
.
T
S

—
—

2
9
.8

—
—

4
4
.5

5
7
0

3
8
2

5
.6

8
.4

Sm
ith

an
d

V
er
ic
at
,
2
0
1
5

A
er
ia
l

3
5
6

2
5

V
ar
ia
b
le

5
.3

5
2
7

A
gi
so
ft

P
h
o
to
sc
an

e
3
0

S-
G
N
SS

A
b
so
lu
te

gr
id

T
LS

—
—

1
0
.9

—
—

1
5
.4

1
5
6
0

11
0
4

2
.1

2
.9

Sm
ith

an
d

V
er
ic
at
,
2
0
1
5

A
er
ia
l

3
5
6

2
5

V
ar
ia
b
le

8
.4

1
3
8

A
gi
so
ft

P
h
o
to
sc
an

e
3
0

S-
G
N
SS

A
b
so
lu
te

5
1
5

0
.1

m
gr
id

vs
.
T
S

—
—

1
8
.1

—
—

2
7
.9

1
4
9
2

9
6
8

2
.2

3
.3

(C
o
n
tin

ue
s)

981CAMERA SYSTEM CONFIGURATION TO OPTIMIZE SFM IMAGERY

Published 2016. This article is a U.S. Government work and is in the public domain in the USA Earth Surf. Process. Landforms, Vol. 42, 969–986 (2017)



Ta
bl
e
IV
.

(C
o
n
tin

u
ed

)

C
am

er
a

G
eo

d
et
ic

co
n
tr
o
l
p
o
in
ts

A
cc
u
ra
cy

as
se
ss
m
en

t
M
A
E

R
M
SE

U
n
ce
rt
ai
n
ty
:

d
is
ta
n
ce

g
N
o
rm

al
iz
ed

b
y
G
Sg

St
u
d
y

P
la
tfo

rm
Se
n
so
r

Si
ze

Fo
ca
l

le
n
gt
h
a

Le
n
s

ty
p
e

N
o
m
in
al

G
Sb

Im
ag
es

So
ftw

ar
e

P
o
in
ts

So
u
rc
e

Ty
p
e

P
o
in
ts

B
en

ch
m
ar
k

X
Y
Z
f

X
Y

Z
X
Y
Z
f

X
Y

Z
M
A
E

R
M
SE

M
A
E

R
M
SE

(m
m

2
)

(m
m
)

(c
m
)

n
n

n
(c
m
)

(c
m
)

(c
m
)

(c
m
)

(c
m
)

(c
m
)

Sm
ith

an
d

V
er
ic
at
,
2
0
1
5

A
er
ia
l

3
5
6

2
5

V
ar
ia
b
le

8
.4

1
3
8

A
gi
so
ft

P
h
o
to
sc
an

e
3
0

S-
G
N
SS

A
b
so
lu
te

7
3
0

1
.0

m
gr
id

vs
.
T
S

—
—

2
7
.3

—
—

3
9
.1

9
8
9

6
9
1

3
.3

4
.7

Sm
ith

an
d

V
er
ic
at
,
2
0
1
5

A
er
ia
l

3
5
6

2
5

V
ar
ia
b
le

8
.4

1
3
8

A
gi
so
ft

P
h
o
to
sc
an

e
3
0

S-
G
N
SS

A
b
so
lu
te

gr
id

T
LS

—
—

2
0
.8

—
—

3
7
.4

1
2
9
8

7
2
2

2
.5

4
.5

N
o
u
w
ak
p
o

et
al
.,
2
0
1
6

Te
rr
es
tr
ia
l

3
2
9

3
2

Fi
xe
d

0
.0
6

2
5

A
gi
so
ft

P
h
o
to
sc
an

e
1
0–

1
5

T
S,

IC
P,

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

gr
id

sa
m
e
T
LS

—
—

0
.0
0
3

—
—

—
6
6
6
6
7

—
0
.1

—

N
o
u
w
ak
p
o

et
al
.,
2
0
1
6

Te
rr
es
tr
ia
l

3
2
9

3
2

Fi
xe
d

0
.0
6

1
2
7

A
gi
so
ft

P
h
o
to
sc
an

e
1
0–

1
5

T
S,

IC
P,

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

gr
id

sa
m
e
T
LS

—
—

0
.0
4
7

—
—

—
4
2
5
5

—
0
.8

—

N
o
u
w
ak
p
o

et
al
.,
2
0
1
6

Te
rr
es
tr
ia
l

3
2
9

3
2

Fi
xe
d

0
.0
6

7
2

A
gi
so
ft

P
h
o
to
sc
an

e
1
0–

1
5

T
S,

IC
P,

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

gr
id

sa
m
e
T
LS

—
—

0
.1
0
8

—
—

—
1
8
5
2

—
1
.8

—

N
o
u
w
ak
p
o

et
al
.,
2
0
1
6

Te
rr
es
tr
ia
l

3
2
9

3
2

Fi
xe
d

0
.0
6

1
4
3

A
gi
so
ft

P
h
o
to
sc
an

e
1
0–

1
5

T
S,

IC
P,

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

gr
id

sa
m
e
T
LS

—
—

0
.0
0
1

—
—

—
2
0
0
0
0
0

—
0
.0

—

N
o
u
w
ak
p
o

et
al
.,
2
0
1
6

Te
rr
es
tr
ia
l

3
2
9

3
2

Fi
xe
d

0
.0
6

2
8
2

A
gi
so
ft

P
h
o
to
sc
an

e
1
0–

1
5

T
S,

IC
P,

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

gr
id

sa
m
e
T
LS

—
—

2
.8
3
0

—
—

—
7
1

—
4
7
.2

—

N
o
u
w
ak
p
o

et
al
.,
2
0
1
6

Te
rr
es
tr
ia
l

3
2
9

3
2

Fi
xe
d

0
.0
6

1
4
5

A
gi
so
ft

P
h
o
to
sc
an

e
1
0–

1
5

T
S,

IC
P,

T
LS

p
o
in
t

cl
o
u
d

R
el
at
iv
e

gr
id

sa
m
e
T
LS

—
—

0
.9
9
0

—
—

—
2
0
2

—
1
6
.5

—

D
ie
tr
ic
h
,
2
0
1
6

A
er
ia
l

3
3
2

2
5

V
ar
ia
b
le

6
1
4
8
3

A
gi
so
ft

P
h
o
to
sc
an

e
6
6

M
-G

N
SS

A
b
so
lu
te

5
6

A
LS
-p
o
in
t
cl
o
u
d

—
4
9

5
3

—
6
2

7
3

3
7
7

2
7
4

8
.8

1
2
.2

T
h
is
st
u
d
y,

2
0
1
0

d
at
as
et

A
er
ia
l

3
8
4

3
0

Fi
xe
d

2
.8

2
11

V
is
u
al
Sf
M

4
M
-
an

d
S-
G
N
SS

A
b
so
lu
te

1
6
4

M
-
an

d
S-
G
N
SS
,
T
S

—
—

3
6

—
—

4
5

2
7
8

2
2
2

1
2
.9

1
6
.1

T
h
is
st
u
d
y,

2
0
11

d
at
as
et

A
er
ia
l

3
8
4

3
0

Fi
xe
d

2
.8

7
6

V
is
u
al
Sf
M

4
M
-
an

d
S-
G
N
SS

A
b
so
lu
te

2
0
0

M
-
an

d
S-
G
N
SS
,
T
S

—
—

3
4

—
—

4
2

2
9
4

2
3
8

1
2
.1

1
5
.0

T
h
is
st
u
d
y,

2
0
1
2

d
at
as
et

A
er
ia
l

3
8
4

3
0

Fi
xe
d

2
.8

8
1

V
is
u
al
Sf
M

4
M
-
an

d
S-
G
N
SS

A
b
so
lu
te

8
8

M
-
an

d
S-
G
N
SS
,
T
S

—
—

3
7

—
—

3
9

2
7
0

2
5
6

1
3
.2

1
3
.9

T
h
is
st
u
d
y,

2
0
1
4

d
at
as
et

A
er
ia
l

8
6
2

5
0

Fi
xe
d

5
.4

2
0

V
is
u
al
Sf
M

4
M
-
an

d
S-
G
N
SS

A
b
so
lu
te

3
9

M
-
an

d
S-
G
N
SS
,
T
S

—
—

6
—

—
2
8

1
0
1
6
0

2
1
4
3

1
.1

5
.2

N
o
te
:U

n
le
ss
p
ro
vi
d
ed

in
th
e
lit
er
at
ur
e,
n
o
m
in
al
gr
ou

n
d
sa
m
p
le
(G

S)
d
is
ta
nc

e
is
es
tim

at
ed

b
as
ed

o
n
se
n
so
rc

h
ar
ac
te
ri
st
ic
s,
le
n
s
fo
ca
ll
en

gt
h
,a
n
d
o
bj
ec
td

is
ta
n
ce
.G

eo
de

tic
co

n
tr
o
li
s
p
ro
vi
de

d
b
y:
re
cr
ea
tio

n-
gr
ad

e
G
N
SS

(R
-

G
N
SS
,�

3
.0

m
),
m
ap

-g
ra
d
e
G
N
SS

(M
-G

N
SS
,�

0
.5
0
m
),
su
rv
ey
-g
ra
d
e
G
N
SS

(S
-G

N
SS
,�

0
.1
0
m
),
to
ta
ls
ta
tio

n
(T
S,
�0

.0
5
m
),
o
ra

p
re
-e
xi
st
in
g
D
T
M

(e
.g
.t
ra
d
iti
o
n
al
p
h
o
to
gr
am

m
et
ri
c
(T
P
)-
o
rT

LS
-D

T
M
).
A
b
so
lu
te
ac
cu

ra
cy

is
as
se
ss
ed

b
y
in
d
ep

en
d
en

tv
al
id
at
io
n
p
o
in
ts
o
r
D
T
M
s
(e
.g
.G

N
SS
);
re
la
tiv

e
ac
cu

ra
cy

is
as
se
ss
ed

b
y
co

m
p
ar
is
on

w
ith

an
o
th
er

D
T
M

o
r
es
tim

at
ed

b
y
so
ftw

ar
e
(o
fte

n
b
as
ed

o
n
G
C
P
re
si
d
u
al
s
o
r
p
ro
p
ri
et
ar
y
b
u
n
dl
e-
ad

ju
st
m
en

t
q
u
al
ity

th
re
sh
o
ld
s)
.

a
Fo

ca
l
le
n
gt
h
is
st
at
ed

in
3
5
m
m

eq
u
iv
al
en

t.
b
N
o
m
in
al

G
S
d
is
ta
n
ce

is
ca
lc
u
la
te
d
u
si
n
g
av
er
ag
e
d
is
ta
nc

e
to

su
b
je
ct
,
fo
ca
l
le
n
gt
h,

se
n
so
r
si
ze
,
an

d
p
ix
el

d
im

en
si
o
n
s.
A
ct
u
al

G
S
d
is
ta
nc

e
is
va
ri
ab

le
th
ro
ug

h
o
u
t
th
e
fr
am

e
o
f
an

o
b
liq

u
e
im

ag
e.

c
B
u
nd

le
r
is
co

m
p
ri
se
d
o
f
SI
FT
,
C
M
V
S,

P
M
V
S2

,
an

d
Sf
m
_g
eo

re
f.

d
A
u
to
de

sk
1
2
3D

C
at
ch

d
o
w
ns
am

p
le
s
im

ag
er
y
to

th
re
e
m
eg
ap

ix
el
s
to

d
ec
re
as
e
p
ro
ce
ss
in
g
tim

e.
e
H
as

b
ee
n
o
p
tim

iz
ed

w
ith

in
A
gi
so
ft
P
h
o
to
sc
an

to
in
cl
u
d
e
gr
o
u
n
d
co

n
tr
o
l
p
o
in
ts
in

th
e
fin

al
re
co

n
st
ru
ct
io
n
,
si
m
ila

r
to

tr
ad

iti
o
n
al

p
h
o
to
gr
am

m
et
ry
.

f A
ss
u
m
ed

to
b
e
th
re
e-
d
im

en
si
o
na

l
(3
D
)
(X
Y
Z
)
w
h
en

u
n
sp
ec
ifi
ed

in
re
p
o
rt

g
B
as
ed

o
n
ve
rt
ic
al

(Z
);
w
h
er
e
Z
is
n
o
t
av
ai
la
b
le
,
th
is
va
lu
e
is
b
as
ed

o
n
3
D

(X
Y
Z
)
ac
cu

ra
cy
.

982 A. R. MOSBRUCKER ET AL.

Published 2016. This article is a U.S. Government work and is in the public domain in the USA Earth Surf. Process. Landforms, Vol. 42, 969–986 (2017)



photographs, lighting conditions, pixel matching performance,
camera calibration quality, point density, GCP characteristics
and transformation, terrain characteristics, and DTM surface
interpolation method.
Despite our case study results showing a strong correlation

between image quality and accuracy, our literature review
shows no universal correlation between sensor size and accu-
racy. This is presumably due to ambiguity in the comparison,
as larger sensors have been shown to have better image quality
(greater dynamic range and lower noise), especially in
challenging ambient lighting conditions, where Gienko and
Terry (2014) found a reduction in point density by a factor of
170. Unfortunately, the studies we reviewed lacked informa-
tion necessary to sufficiently evaluate point density.
Our results support experiments conducted by Shortis et al.

(2006) who show that while zoom lenses can produce
acceptable results, a fixed focal length lens provides superior
accuracy, precision, and stability; their results show degrada-
tion of relative precision (72% average RMS) and accuracy
(44% average RMS) using zoom compared to fixed lenses.
While Micheletti et al. (2015a) suggested that a greater num-

ber of photographs could increase point density, our experi-
ence instead supports Gomez et al. (2015), who found it
better to have fewer high-quality images rather than a large
number of low-quality frames. Our review shows no correla-
tion between the number of photographs used in SfM recon-
struction and resulting DTM accuracy.
The relationship between photographic scale and accuracy of

photogrammetric data is well established. However, unlike stan-
dard large-format metric camera systems used for traditional
photogrammetry, SfM source imagery is typically acquired using
small-format consumer-grade digital cameras which use a vari-
ety of different sensors and lenses. This lack of standardized
camera system causes photographic scale to be determined by
more than object distance. While recent SfM literature describes
scale as object distance, we found GS distance, or spatial resolu-
tion of the imagery, to be a better metric.
Our simple linear regression model predicting MAE from

object distance (R2 = 0.54, n=52) is slightly weaker than a
power law found by a previous review of existing SfM valida-
tion datasets by Smith and Vericat (2015) over a comparable
range (0.57 exponent, R2 = 0.69, n=28). Our model
predicting MAE from GS distance of reviewed datasets is
comparable (R2 = 0.68, n=46) but more applicable consider-
ing how photographic scale is calculated from consumer-
grade digital camera systems. It is important to note that none
of these models fully describe the multivariate relationships
within a complex SfM error budget; correlations do, however,
provide a useful contribution to the discipline and promote
further investigation.
In a similar attempt to relate image quality to accuracy, Eltner

et al. (2016) evaluated absolute pixel size as a reasonable sur-
rogate but did not extend their analysis to GS distance (i.e. pixel
size projected onto the ground surface). Their review found no
obvious influence of pixel size on SfM-derived DEM quality
due to many cameras having similar values (~5μm) producing
a large range of errors.
We build upon this discussion and practical guidelines

previously synthesized (e.g. Smith et al., 2016), specifically
regarding the use of photographic instruments for geomorphic
applications of SfM; these are summarized as follows:

Camera system selection:

• Large (≥ 300mm2, or APS-C) high-resolution (≥ 16 MP)
sensor that has no anti-aliasing filter effect and is coupled
to a ≥14-bit non-linear ADC.

• Stable and fixed lens (non-retractable and non-zoom) with a
focal length between 35 and 105mm, preferably with a me-
chanical stop at infinity.

• Lens with apochromatic optical formula that includes low
dispersion and/or aspheric glass.

• Camera body and lens made of rigid metal (magnesium is
common).

• A few compact camera systems are available that meet most
of these guidelines if size/weight are restricted (e.g. UAV
platforms).

Camera system configuration:

• For stationary camera platforms, set the exposure mode to
aperture priority and select an aperture of f/5.6–11.0.

• For non-stationary camera platforms (e.g. aerial surveys), set
the exposure mode to shutter priority and select a shutter
speed <1/400 s.

• Keep ISO as low as possible (≤ 400) while maintaining
acceptable shutter speed and aperture values.

• Set the camera and/or lens to manual focus (at an appropri-
ate distance for optimal depth-of-field if hyperfocal distance
is not exceeded) and tape the focus ring.

• Disable image stabilization, automatic image rotation, and
(generally) in-camera distortion correction.

• Set the camera to record RAW and fine JPEG at the
maximum available resolution and AdobeRGB color space
if read/write speed is not limited.

Image acquisition:

• Mission plan to ensure optimum ambient lighting
conditions; choose an overcast day or center survey interval
on solar noon (online calculators available).

• Ensure all areas of interest are included in ≥ three
photographs.

• Minimize GS distance (image spatial resolution) by using a
short object distance or longer focal length for a given sensor
size.

• Prioritize image quality over quantity; acquire the minimum
number of photographs needed to capture the study area
spatial extent and avoid occlusions at a given GS distance.

• Acquire convergent imagery (< 20° camera-to-camera) with
>40° angle of incidence (camera-to-ground) at multiple ob-
ject distances, with ≥80% frame overlap (the entire study
area supplemented by detailed imagery at greater scale); if
a parallel strip is necessary, consider correcting radial lens
distortion in Photoshop prior to reconstruction and/or
subdividing the project if sufficient GCPs are present.

• If the dynamic range of a static scene is too great, consider
capturing multiple frames at different exposures to produce
an HDR image.

• If significant reflections or glare are present (e.g. water
surface), consider using a polarizing filter on the lens (only
useful and right angles to the sun however).

Our experience has shown that computer hardware char-
acteristics, largely overlooked by the SfM community, are re-
lated to the number of features matched per frame, and thus
resulting model accuracy. Increasing the information capacity
(specifically resolution and bit-depth) of SfM source imagery
can greatly influence the computational requirements of 3D
reconstruction. Because many SfM algorithms are designed
to use high-end computer graphics cards and parallel pro-
cessing, the CPU, RAM, power supply, and cooling system
of a SfM workstation (or cluster) should support heavy com-
putation. This is especially important as camera systems
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continue to increase image file size; unpublished aerial
surveys conducted by the authors regularly exceed 30GB
per 10 river miles.

Conclusions

This paper provided a practical discussion of camera system
selection, configuration, and image acquisition considerations
for SfM photogrammetric applications in geomorphology. The
hypothesis that optimizing source imagery could increase
DTM accuracy was tested by evaluating accuracies of four
SfM datasets conducted over multiple years of a gravel bed
river floodplain using independent topographic survey points.
This analysis was then extended to compare morphological
sediment budgets computed from SfM- and LiDAR-derived
DTMs. Case study results were compared to existing SfM
validation studies in an attempt to deconstruct the principle
components of a SfM error budget.
The premise of this paper is that pixel-level feature detec-

tion is a key constraint to SfM camera calibration, point
density, and resulting DTM accuracy. This pixel matching is
a function of image characteristics (e.g. information capacity,
geometry, lighting, and surface texture). Case study results
show an eight-fold increase in number of points generated
from each frame, a six-fold increase in vertical accuracy,
and 50% greater precision produced by increasing the infor-
mation capacity of source imagery. These DTMs have point
densities (6–17m�2) and accuracies (6–37 cm) of the same
approximate magnitude as airborne or terrestrial LiDAR,
though precision is found to be less (55–87 cm). When prop-
agated through volumetric change analysis, individual DTM
accuracy was sufficient to detect moderate geomorphic
change (order 100 000m3) on an unvegetated fluvial surface;
change detection determined from repeat LiDAR and SfM
surveys differed by about 10% and was within analysis
uncertainty.
The accuracies of 67 published SfM datasets and their asso-

ciated survey metrics were evaluated, despite being challenged
by many ambiguities (e.g. assessment type, software, lack of
metadata) which severely limited comparison to case study
results regarding image quality parameters. No significant
relationship between DTM accuracy and sensor size, focal
length, number of frames, or GCP quantity was found. How-
ever, the review showed that using a fixed focal length, rather
than a zoom, lens significantly improved (64%) mean absolute
vertical accuracy of these datasets.
Despite the importance of image quality, our review

suggests that scale is the most universal explanatory variable
in a SfM error budget. While recent SfM literature describes
scale as object distance, we found GS distance, or spatial
resolution of the imagery, to be a better metric, accounting
for 68% of the variability in MAE. We argue that ground
sample distance is a more applicable considering how
photographic scale is calculated from consumer-grade digital
camera systems.
These findings are used to synthesize the current best prac-

tices regarding the use of photographic instruments for geomor-
phic applications of SfM. Our observations support the need for
rigorous laboratory-based investigations of image optimization
to advance the art and science of making measurements from
photographs.
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