393 research outputs found

    Direct P-wave anisotropy measurements at Homestake Mine: implications for wave propagation in continental crust

    Get PDF
    We measured anisotropic seismic properties of schists of the Homestake Formation located at a depth of 1478 m in the Sanford Underground Research Facility (SURF) in the Black Hills of South Dakota, USA. We deployed a 24-element linear array of three-component geophones in an area in the Homestake Mine called 19-ledge. An airless jackhammer source was used to shoot two profiles: (1) a walkaway survey to appraise any distance dependence and (2) a fan shot profile to measure variations with azimuth. Slowness estimates from the fan shot profile show a statistically significant deviation with azimuth with the expected 180° variation with azimuth. We measured P-wave particle motion deviations from data rotated to ray coordinates using three methods: (1) a conventional principal component method, (2) a novel grid search method that maximized longitudinal motion over a range of search angles and (3) the multiwavelet method. The multiwavelet results were computed in two frequency bands of 200–600 and 100–300 Hz. Results were binned by azimuth and averaged with a robust estimation method with error bars estimated by a bootstrap method. The particle motion results show large, statistically significant variations with azimuth with a 180° cyclicity. We modelled the azimuthal variations in compressional wave speed and angular deviation from purely longitudinal particle motion of P-waves using an elastic tensor method to appraise the relative importance of crystalline fabric relative to fracturing parallel to foliation. The model used bulk averages of crystal fabric measured for an analogous schist sample from southeast Vermont rotated to the Homestake Formation foliation directions supplied by SURF from old mine records. We found with average crustal crack densities crack induced anisotropy had only a small effect on the observables. We found strong agreement in the traveltime data. The observed amplitudes of deviations of P particle motion showed significantly larger variation than the model predictions and a 20° phase shift in azimuth. We attribute the inadequacies of the model fit to the particle motion data to inadequacies in the analogue rock and/or near receiver distortions from smaller scale heterogeneity. We discuss the surprising variability of signals recorded in this experimental data. We show clear examples of unexplained resonances and unexpected variations on a scale much smaller than a wavelength that has broad implications for wave propagation in real rocks

    An improved error assessment for the GEM-T1 gravitational model

    Get PDF
    Several tests were designed to determine the correct error variances for the GEM-T1 gravitational solution which was derived exclusively from satellite tracking data. The basic method employs both wholly independent and dependent subset data solutions and produces a full field coefficient by coefficient estimate of the model uncertainties. The GEM-T1 errors were further analyzed using a method based upon eigenvalue-eigenvector analysis which calibrates the entire covariance matrix. Dependent satellite and independent altimetric and surface gravity data sets, as well as independent satellite deep resonance information, confirm essentially the same error assessment

    Measuring the relativistic perigee advance with Satellite Laser Ranging

    Full text link
    One of the most famous classical tests of General Relativity is the gravitoelectric secular advance of the pericenter of a test body in the gravitational field of a central mass. In this paper we explore the possibility of performing a measurement of the gravitoelectric pericenter advance in the gravitational field of the Earth by analyzing the laser-ranged data to some existing, or proposed, laser-ranged geodetic satellites. At the present level of knowledge of various error sources, the relative precision obtainable with the data from LAGEOS and LAGEOS II, suitably combined, is of the order of 10−310^{\rm -3}. Nevertheless, these accuracies could sensibly be improved in the near future when the new data on the terrestrial gravitational field from the CHAMP and GRACE missions will be available. The use of the perigee of LARES (LAser RElativity Satellite), in the context of a suitable combination of orbital residuals including also LAGEOS II, should further raise the precision of the measurement. As a secondary outcome of the proposed experiment, with the so obtained value of \ppn and with \et=4\beta-\gamma-3 from Lunar Laser Ranging it could be possible to obtain an estimate of the PPN parameters γ\gamma and β\beta at the 10−2−10−310^{-2}-10^{-3} level.Comment: LaTex2e, 14 pages, no figures, 2 tables. To appear in Classical and Quantum Gravit

    Tectonic geomorphology and late Quaternary deformation on the Ragged Mountain fault, Yakutat microplate, south coastal Alaska

    Get PDF
    The 33 km-long Ragged Mountain fault (RMF) forms the northwestern corner of the Yakutat Terrane, which is colliding with the North American plate in south coastal Alaska at ~5.5 cm/yr. The fault zone contains three types of scarps in a zone up to 175 m wide: (1) antislope scarps on the lower range front, (2) a sinuous thrust scarp at the toe of the range front, and (3) a swarm of flexural-slip scarps on the footwall. Trenches across the first two scarp types reveal evidence for two Holocene surface ruptures, plus several late Pleistocene ruptures. In the antislope scarp trench, ruptures occurred at 0.5–3.9 ka; slightly younger than 8.3 ka; and at 18.1–21.8 ka (recurrence intervals 4.4–8 kyr and 9.8–13.3 kyr). Displacements per event ranged from 15 to 40 cm. In the thrust trench ruptures are dated at 2.8–5.9 ka; 5.9–17.2 ka, and 17.2–44.9 ka (mean recurrence intervals 7.2 kyr and 19.5 kyr). Displacements per event ranged from 26 to 77 cm. We interpret the thrust fault as the primary seismogenic structure, and its largest trench displacement (77 cm) equates to the average displacement expected for a 33 km-long reverse rupture. The flexural-slip scarp, in contrast, was rapidly formed ca. 4 ka but its sag pond sediments have continued to slowly fold up to present. The southern third of the fault is dominated by large gravitational failures of the range front (as large as 2.5 km wide, 0.6-0.7 km long, and 200–250 m thick), which head in a linear, 40 m-deep range-crest trough filled with lakes, a classic expression of deep-seated gravitational slope deformation

    Flysch deposition and preservation of coherent bedding in an accretionary complex: Detrital zircon ages from the Upper Cretaceous Valdez Group, Chugach terrane, Alaska

    Get PDF
    The Upper Cretaceous Valdez Group represents the flysch facies of the Mesozoic Chugach terrane accretionary complex in southern Alaska. The Valdez Group is dominated by litharenite sandstone and argillite deposited as coherent beds, unlike the older McHugh Complex mélange and massive sandstones. Detrital zircons from five sandstones sampled along an ~55 km transect through the Valdez Group were dated using U-Pb laser ablation-multicollector-inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS). The youngest populations from the two oldest samples, located along strike from each other, were 82-81 Ma. Three samples across strike and outboard of the others are separated by ~50 km, but each has a youngest population dated at ca. 68 Ma. All of these samples have major grain population ages that suggest erosion from the Coast Mountains Batholith, consistent with petrography and grain modes suggesting an arc source. No apparent age gap exists between the youngest McHugh Complex samples and the oldest Valdez Group samples, suggesting continuous deposition despite the different depositional and tectonic style. We propose a model in which the onset of coherently bedded flysch marks the transition from deposition in the trench or trench slope to deposition on the oceanic plate beyond the trench after it was filled at ca. 84 Ma, i.e., the time of the youngest mélange sedimentation. Preservation of coherent bedding resulted as large coherent blocks of Valdez Group rocks were imbricated into the subduction complex during continued subduction in Paleogene time. © 2011 Geological Society of America

    Gravitational model improvement at the Goddard Space Flight Center

    Get PDF
    Major new computations of terrestrial gravitational field models were performed by the Geodynamics Branch of Goddard Space Flight Center (GSFC). This development has incorporated the present state of the art results in satellite geodesy and have relied upon a more consistent set of reference constants than was heretofore utilized in GSFC's GEM models. The solutions are complete in spherical harmonic coefficients out to degree 50 for the gravity field parameters. These models include adjustment for a subset of 66 ocean tidal coefficients for the long wavelength components of 12 major ocean tides. This tidal adjustment was made in the presence of 550 other fixed ocean tidal terms representing 32 major and minor ocean tides and the Wahr frequency dependent solid earth tidal model. In addition 5-day averaged values for Earth rotation and polar motion were derived for the time period of 1980 onward. Two types of models were computed. These are satellite only models relying exclusively on tracking data and combination models which have incorporated satellite altimetry and surface gravity data. The satellite observational data base consists of over 1100 orbital arcs of data on 31 satellites. A large percentage of these observations were provided by third generation laser stations (less than 5 cm). A calibration of the model accuracy of the GEM-T2 satellite only solution indicated that it was a significant improvement over previous models based solely upon tracking data. The rms geoid error for this field is 110 cm to degree and order 36. This is a major advancement over GEM-T1 whose errors were estimated to be 160 cm. An error propagation using the covariances of the GEM-T2 model for the TOPEX radial orbit component indicates that the rms radial errors are expected to be 12 cm. The combination solution, PGS-3337, is a preliminary effort leading to the development of GEM-T3. PGS-3337 has incorporated global sets of surface gravity data and the Seasat altimetry to produce a model complete to (50,50). A solution for the dynamic ocean topography to degree and order 10 was included as part of this adjustment

    An improved model of the Earth's gravitational field: GEM-T1

    Get PDF
    Goddard Earth Model T1 (GEM-T1), which was developed from an analysis of direct satellite tracking observations, is the first in a new series of such models. GEM-T1 is complete to degree and order 36. It was developed using consistent reference parameters and extensive earth and ocean tidal models. It was simultaneously solved for gravitational and tidal terms, earth orientation parameters, and the orbital parameters of 580 individual satellite arcs. The solution used only satellite tracking data acquired on 17 different satellites and is predominantly based upon the precise laser data taken by third generation systems. In all, 800,000 observations were used. A major improvement in field accuracy was obtained. For marine geodetic applications, long wavelength geoidal modeling is twice as good as in earlier satellite-only GEM models. Orbit determination accuracy has also been substantially advanced over a wide range of satellites that have been tested

    LAGEOS geodetic analysis-SL7.1

    Get PDF
    Laser ranging measurements to the LAGEOS satellite from 1976 through 1989 are related via geodetic and orbital theories to a variety of geodetic and geodynamic parameters. The SL7.1 analyses are explained of this data set including the estimation process for geodetic parameters such as Earth's gravitational constant (GM), those describing the Earth's elasticity properties (Love numbers), and the temporally varying geodetic parameters such as Earth's orientation (polar motion and Delta UT1) and tracking site horizontal tectonic motions. Descriptions of the reference systems, tectonic models, and adopted geodetic constants are provided; these are the framework within which the SL7.1 solution takes place. Estimates of temporal variations in non-conservative force parameters are included in these SL7.1 analyses as well as parameters describing the orbital states at monthly epochs. This information is useful in further refining models used to describe close-Earth satellite behavior. Estimates of intersite motions and individual tracking site motions computed through the network adjustment scheme are given. Tabulations of tracking site eccentricities, data summaries, estimated monthly orbital and force model parameters, polar motion, Earth rotation, and tracking station coordinate results are also provided

    Prospects in the orbital and rotational dynamics of the Moon with the advent of sub-centimeter lunar laser ranging

    Get PDF
    Lunar laser ranging (LLR) measurements are crucial for advanced exploration of the laws of fundamental gravitational physics and geophysics as well as for future human and robotic missions to the Moon. The corner-cube reflectors (CCR) currently on the Moon require no power and still work perfectly since their installation during the project Apollo era. Current LLR technology allows us to measure distances to the Moon with a precision approaching 1 mm. As NASA pursues the vision of taking humans back to the Moon, new, more precise laser ranging applications will be demanded, including continuous tracking from more sites on Earth, placing new CCR arrays on the Moon, and possibly installing other devices such as transponders, etc. for multiple scientific and technical purposes. Since this effort involves humans in space, then in all situations the accuracy, fidelity, and robustness of the measurements, their adequate interpretation, and any products based on them, are of utmost importance. Successful achievement of this goal strongly demands further significant improvement of the theoretical model of the orbital and rotational dynamics of the Earth-Moon system. This model should inevitably be based on the theory of general relativity, fully incorporate the relevant geophysical processes, lunar librations, tides, and should rely upon the most recent standards and recommendations of the IAU for data analysis. This paper discusses methods and problems in developing such a mathematical model. The model will take into account all the classical and relativistic effects in the orbital and rotational motion of the Moon and Earth at the sub-centimeter level. The model is supposed to be implemented as a part of the computer code underlying NASA Goddard's orbital analysis and geophysical parameter estimation package GEODYN and the ephemeris package PMOE 2003 of the Purple Mountain Observatory. The new model will allow us to navigate a spacecraft precisely to a location on the Moon. It will also greatly improve our understanding of the structure of the lunar interior and the nature of the physical interaction at the core-mantle interface layer. The new theory and upcoming millimeter LLR will give us the means to perform one of the most precise fundamental tests of general relativity in the solar system. © 2008 COSPAR
    • …
    corecore