157 research outputs found

    Efficient tomography with unknown detectors

    Full text link
    We compare the two main techniques used for estimating the state of a physical system from unknown measurements: standard detector tomography and data-pattern tomography. Adopting linear inversion as a fair benchmark, we show that the difference between these two protocols can be traced back to the nonexistence of the reverse-order law for pseudoinverses. We capitalize on this fact to identify regimes where the data-pattern approach outperforms the standard one and vice versa. We corroborate these conclusions with numerical simulations of relevant examples of quantum state tomography.Comment: 13 pages, 6 figures. Submitted for publication. Comments most welcome

    Multiparameter Quantum Metrology of Incoherent Point Sources: Towards Realistic Superresolution

    Full text link
    We establish the multiparameter quantum Cram\'er-Rao bound for simultaneously estimating the centroid, the separation, and the relative intensities of two incoherent optical point sources using alinear imaging system. For equally bright sources, the Cram\'er-Rao bound is independent of the source separation, which confirms that the Rayleigh resolution limit is just an artifact of the conventional direct imaging and can be overcome with an adequate strategy. For the general case of unequally bright sources, the amount of information one can gain about the separation falls to zero, but we show that there is always a quadratic improvement in an optimal detection in comparison with the intensity measurements. This advantage can be of utmost important in realistic scenarios, such as observational astronomy.Comment: 5 pages, 3 figures. Comments welcome

    Intensity-based axial localization at the quantum limit

    Get PDF
    We derive fundamental precision bounds for single-point axial localization. For Gaussian beams, this ultimate limit can be achieved with a single intensity scan, provided the camera is placed at one of two optimal transverse detection planes. Hence, for axial localization there is no need of more complicated detection schemes. The theory is verified with an experimental demonstration of axial resolution 3 orders of magnitude below the classical depth of focus
    • …
    corecore