678 research outputs found
On the local structure of hyperbolic points in Banach spaces
Local structure of hyperbolic points in Banach spac
On the arithmetic sums of Cantor sets
Let C_\la and C_\ga be two affine Cantor sets in with
similarity dimensions d_\la and d_\ga, respectively. We define an analog of
the Bandt-Graf condition for self-similar systems and use it to give necessary
and sufficient conditions for having \Ha^{d_\la+d_\ga}(C_\la + C_\ga)>0 where
C_\la + C_\ga denotes the arithmetic sum of the sets. We use this result to
analyze the orthogonal projection properties of sets of the form C_\la \times
C_\ga. We prove that for Lebesgue almost all directions for which the
projection is not one-to-one, the projection has zero (d_\la +
d_\ga)-dimensional Hausdorff measure. We demonstrate the results on the case
when C_\la and C_\ga are the middle-(1-2\la) and middle-(1-2\ga) sets
Stabilization of heterodimensional cycles
We consider diffeomorphisms with heteroclinic cycles associated to
saddles and of different indices. We say that a cycle of this type can
be stabilized if there are diffeomorphisms close to with a robust cycle
associated to hyperbolic sets containing the continuations of and . We
focus on the case where the indices of these two saddles differ by one. We
prove that, excluding one particular case (so-called twisted cycles that
additionally satisfy some geometrical restrictions), all such cycles can be
stabilized.Comment: 31 pages, 9 figure
Invariant measures for Cherry flows
We investigate the invariant probability measures for Cherry flows, i.e.
flows on the two-torus which have a saddle, a source, and no other fixed
points, closed orbits or homoclinic orbits. In the case when the saddle is
dissipative or conservative we show that the only invariant probability
measures are the Dirac measures at the two fixed points, and the Dirac measure
at the saddle is the physical measure. In the other case we prove that there
exists also an invariant probability measure supported on the quasi-minimal
set, we discuss some situations when this other invariant measure is the
physical measure, and conjecture that this is always the case. The main
techniques used are the study of the integrability of the return time with
respect to the invariant measure of the return map to a closed transversal to
the flow, and the study of the close returns near the saddle.Comment: 12 pages; updated versio
Correlated fractal percolation and the Palis conjecture
Let F1 and F2 be independent copies of correlated fractal percolation, with
Hausdorff dimensions dimH(F1) and dimH(F2). Consider the following question:
does dimH(F1)+dimH(F2)>1 imply that their algebraic difference F1-F2 will
contain an interval? The well known Palis conjecture states that `generically'
this should be true. Recent work by Kuijvenhoven and the first author
(arXiv:0811.0525) on random Cantor sets can not answer this question as their
condition on the joint survival distributions of the generating process is not
satisfied by correlated fractal percolation. We develop a new condition which
permits us to solve the problem, and we prove that the condition of
(arXiv:0811.0525) implies our condition. Independently of this we give a
solution to the critical case, yielding that a strong version of the Palis
conjecture holds for fractal percolation and correlated fractal percolation:
the algebraic difference contains an interval almost surely if and only if the
sum of the Hausdorff dimensions of the random Cantor sets exceeds one.Comment: 22 page
Observation and inverse problems in coupled cell networks
A coupled cell network is a model for many situations such as food webs in
ecosystems, cellular metabolism, economical networks... It consists in a
directed graph , each node (or cell) representing an agent of the network
and each directed arrow representing which agent acts on which one. It yields a
system of differential equations , where the component
of depends only on the cells for which the arrow
exists in . In this paper, we investigate the observation problems in
coupled cell networks: can one deduce the behaviour of the whole network
(oscillations, stabilisation etc.) by observing only one of the cells? We show
that the natural observation properties holds for almost all the interactions
Simultaneous Continuation of Infinitely Many Sinks Near a Quadratic Homoclinic Tangency
We prove that the diffeomorphisms on surfaces, exhibiting infinitely
many sinksnear the generic unfolding of a quadratic homoclinic tangency of a
dissipative saddle, can be perturbed along an infinite dimensional manifold of
diffeomorphisms such that infinitely many sinks persist simultaneously.
On the other hand, if they are perturbed along one-parameter families that
unfold generically the quadratic tangencies, then at most a finite number of
those sinks have continuation
A test for a conjecture on the nature of attractors for smooth dynamical systems
Dynamics arising persistently in smooth dynamical systems ranges from regular
dynamics (periodic, quasiperiodic) to strongly chaotic dynamics (Anosov,
uniformly hyperbolic, nonuniformly hyperbolic modelled by Young towers). The
latter include many classical examples such as Lorenz and H\'enon-like
attractors and enjoy strong statistical properties.
It is natural to conjecture (or at least hope) that most dynamical systems
fall into these two extreme situations. We describe a numerical test for such a
conjecture/hope and apply this to the logistic map where the conjecture holds
by a theorem of Lyubich, and to the Lorenz-96 system in 40 dimensions where
there is no rigorous theory. The numerical outcome is almost identical for both
(except for the amount of data required) and provides evidence for the validity
of the conjecture.Comment: Accepted version. Minor modifications from previous versio
Persistent Chaos in High Dimensions
An extensive statistical survey of universal approximators shows that as the
dimension of a typical dissipative dynamical system is increased, the number of
positive Lyapunov exponents increases monotonically and the number of parameter
windows with periodic behavior decreases. A subset of parameter space remains
in which topological change induced by small parameter variation is very
common. It turns out, however, that if the system's dimension is sufficiently
high, this inevitable, and expected, topological change is never catastrophic,
in the sense chaotic behavior is preserved. One concludes that deterministic
chaos is persistent in high dimensions.Comment: 4 pages, 3 figures; Changes in response to referee comment
- …